Pietro D’Addabbo, Roni Cohen-Fultheim, Itamar Twersky, Adriano Fonzino, Domenico Alessandro Silvestris, Ananth Prakash, Pietro Luca Mazzacuva, Juan Antonio Vizcaino, Andrew Green, Blake Sweeney, Andy Yates, Yvonne Lussi, Jie Luo, Maria-Jesus Martin, Eli Eisenberg, Erez Y Levanon, Graziano Pesole, Ernesto Picardi
{"title":"REDIportal:实现 \"从 A 到 I \"编辑的综合视图","authors":"Pietro D’Addabbo, Roni Cohen-Fultheim, Itamar Twersky, Adriano Fonzino, Domenico Alessandro Silvestris, Ananth Prakash, Pietro Luca Mazzacuva, Juan Antonio Vizcaino, Andrew Green, Blake Sweeney, Andy Yates, Yvonne Lussi, Jie Luo, Maria-Jesus Martin, Eli Eisenberg, Erez Y Levanon, Graziano Pesole, Ernesto Picardi","doi":"10.1093/nar/gkae1083","DOIUrl":null,"url":null,"abstract":"A-to-I RNA editing is the most common non-transient epitranscriptome modification. It plays several roles in human physiology and has been linked to several disorders. Large-scale deep transcriptome sequencing has fostered the characterization of A-to-I editing at the single nucleotide level and the development of dedicated computational resources. REDIportal is a unique and specialized database collecting ∼16 million of putative A-to-I editing sites designed to face the current challenges of epitranscriptomics. Its running version has been enriched with sites from the TCGA project (using data from 31 studies). REDIportal provides an accurate, sustainable and accessible tool enriched with interconnections with widespread ELIXIR core resources such as Ensembl, RNAcentral, UniProt and PRIDE. Additionally, REDIportal now includes information regarding RNA editing in putative double-stranded RNAs, relevant for the immune-related roles of editing, as well as an extended catalog of recoding events. Finally, we report a reliability score per site calculated using a deep learning model trained using a huge collection of positive and negative instances. REDIportal is available at http://srv00.recas.ba.infn.it/atlas/.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"16 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REDIportal: toward an integrated view of the A-to-I editing\",\"authors\":\"Pietro D’Addabbo, Roni Cohen-Fultheim, Itamar Twersky, Adriano Fonzino, Domenico Alessandro Silvestris, Ananth Prakash, Pietro Luca Mazzacuva, Juan Antonio Vizcaino, Andrew Green, Blake Sweeney, Andy Yates, Yvonne Lussi, Jie Luo, Maria-Jesus Martin, Eli Eisenberg, Erez Y Levanon, Graziano Pesole, Ernesto Picardi\",\"doi\":\"10.1093/nar/gkae1083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A-to-I RNA editing is the most common non-transient epitranscriptome modification. It plays several roles in human physiology and has been linked to several disorders. Large-scale deep transcriptome sequencing has fostered the characterization of A-to-I editing at the single nucleotide level and the development of dedicated computational resources. REDIportal is a unique and specialized database collecting ∼16 million of putative A-to-I editing sites designed to face the current challenges of epitranscriptomics. Its running version has been enriched with sites from the TCGA project (using data from 31 studies). REDIportal provides an accurate, sustainable and accessible tool enriched with interconnections with widespread ELIXIR core resources such as Ensembl, RNAcentral, UniProt and PRIDE. Additionally, REDIportal now includes information regarding RNA editing in putative double-stranded RNAs, relevant for the immune-related roles of editing, as well as an extended catalog of recoding events. Finally, we report a reliability score per site calculated using a deep learning model trained using a huge collection of positive and negative instances. REDIportal is available at http://srv00.recas.ba.infn.it/atlas/.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae1083\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1083","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
A 到 I RNA 编辑是最常见的非瞬时表转录组修饰。它在人体生理学中发挥着多种作用,并与多种疾病相关。大规模的深度转录组测序促进了单核苷酸水平的A-to-I编辑表征和专用计算资源的开发。REDIportal 是一个独特的专业数据库,收集了 1,600 万个推定的 A 对 I 编辑位点,旨在应对当前表转录组学的挑战。该数据库的运行版本使用了 TCGA 项目中的编辑位点(使用了 31 项研究的数据)。REDIportal 提供了一个准确、可持续和可访问的工具,与 Ensembl、RNAcentral、UniProt 和 PRIDE 等广泛的 ELIXIR 核心资源相互连接。此外,REDIportal 现在还包括推定双链 RNA 中与编辑的免疫相关作用有关的 RNA 编辑信息,以及扩展的重编码事件目录。最后,我们还报告了每个站点的可靠性得分,该得分是通过使用大量正反实例训练的深度学习模型计算得出的。REDIportal 可在 http://srv00.recas.ba.infn.it/atlas/ 上查阅。
REDIportal: toward an integrated view of the A-to-I editing
A-to-I RNA editing is the most common non-transient epitranscriptome modification. It plays several roles in human physiology and has been linked to several disorders. Large-scale deep transcriptome sequencing has fostered the characterization of A-to-I editing at the single nucleotide level and the development of dedicated computational resources. REDIportal is a unique and specialized database collecting ∼16 million of putative A-to-I editing sites designed to face the current challenges of epitranscriptomics. Its running version has been enriched with sites from the TCGA project (using data from 31 studies). REDIportal provides an accurate, sustainable and accessible tool enriched with interconnections with widespread ELIXIR core resources such as Ensembl, RNAcentral, UniProt and PRIDE. Additionally, REDIportal now includes information regarding RNA editing in putative double-stranded RNAs, relevant for the immune-related roles of editing, as well as an extended catalog of recoding events. Finally, we report a reliability score per site calculated using a deep learning model trained using a huge collection of positive and negative instances. REDIportal is available at http://srv00.recas.ba.infn.it/atlas/.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.