近场等效无穷小偶极子模型的形态学搜索

IF 2 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Tomas Monopoli;Xinglong Wu;Cheng Yang;Christian Schuster;Sergio Amedeo Pignari;Johannes Wolf;Flavia Grassi
{"title":"近场等效无穷小偶极子模型的形态学搜索","authors":"Tomas Monopoli;Xinglong Wu;Cheng Yang;Christian Schuster;Sergio Amedeo Pignari;Johannes Wolf;Flavia Grassi","doi":"10.1109/TEMC.2024.3492701","DOIUrl":null,"url":null,"abstract":"Near-field modeling techniques have proven to be very useful for electromagnetic compatibility evaluation. In this article, a new method for building infinitesimal dipole models using near-field phaseless scans is presented. The proposed approach enables the identification of optimal dipole source locations by comparing the pattern of an infinitesimal dipole with the measured field maps. Finally, the dipole moments are fitted by using the Levenberg–Marquardt algorithm. This method is validated on two different virtual devices and on measurements from a real device. These test cases cover a range of frequencies (156, 381, 514, and 1 GHz) and scan dimensions (9.4 cm × 8.4 cm and 10.6 cm × 14 cm), demonstrating the robustness and versatility of the proposed method.","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"67 2","pages":"566-577"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological Search for Near-Field Equivalent Infinitesimal Dipole Models\",\"authors\":\"Tomas Monopoli;Xinglong Wu;Cheng Yang;Christian Schuster;Sergio Amedeo Pignari;Johannes Wolf;Flavia Grassi\",\"doi\":\"10.1109/TEMC.2024.3492701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near-field modeling techniques have proven to be very useful for electromagnetic compatibility evaluation. In this article, a new method for building infinitesimal dipole models using near-field phaseless scans is presented. The proposed approach enables the identification of optimal dipole source locations by comparing the pattern of an infinitesimal dipole with the measured field maps. Finally, the dipole moments are fitted by using the Levenberg–Marquardt algorithm. This method is validated on two different virtual devices and on measurements from a real device. These test cases cover a range of frequencies (156, 381, 514, and 1 GHz) and scan dimensions (9.4 cm × 8.4 cm and 10.6 cm × 14 cm), demonstrating the robustness and versatility of the proposed method.\",\"PeriodicalId\":55012,\"journal\":{\"name\":\"IEEE Transactions on Electromagnetic Compatibility\",\"volume\":\"67 2\",\"pages\":\"566-577\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electromagnetic Compatibility\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10766888/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electromagnetic Compatibility","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10766888/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近场建模技术已被证明是非常有用的电磁兼容性评估。本文提出了一种利用近场无相扫描建立无限小偶极子模型的新方法。该方法通过将极小偶极子的模式与实测场图进行比较,可以识别出最佳的偶极子源位置。最后,利用Levenberg-Marquardt算法对偶极矩进行拟合。该方法在两个不同的虚拟设备上进行了验证,并在真实设备上进行了测量。这些测试用例涵盖了频率范围(156、381、514和1ghz)和扫描尺寸范围(9.4 cm × 8.4 cm和10.6 cm × 14 cm),证明了所提出方法的鲁棒性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological Search for Near-Field Equivalent Infinitesimal Dipole Models
Near-field modeling techniques have proven to be very useful for electromagnetic compatibility evaluation. In this article, a new method for building infinitesimal dipole models using near-field phaseless scans is presented. The proposed approach enables the identification of optimal dipole source locations by comparing the pattern of an infinitesimal dipole with the measured field maps. Finally, the dipole moments are fitted by using the Levenberg–Marquardt algorithm. This method is validated on two different virtual devices and on measurements from a real device. These test cases cover a range of frequencies (156, 381, 514, and 1 GHz) and scan dimensions (9.4 cm × 8.4 cm and 10.6 cm × 14 cm), demonstrating the robustness and versatility of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
19.00%
发文量
235
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Electromagnetic Compatibility publishes original and significant contributions related to all disciplines of electromagnetic compatibility (EMC) and relevant methods to predict, assess and prevent electromagnetic interference (EMI) and increase device/product immunity. The scope of the publication includes, but is not limited to Electromagnetic Environments; Interference Control; EMC and EMI Modeling; High Power Electromagnetics; EMC Standards, Methods of EMC Measurements; Computational Electromagnetics and Signal and Power Integrity, as applied or directly related to Electromagnetic Compatibility problems; Transmission Lines; Electrostatic Discharge and Lightning Effects; EMC in Wireless and Optical Technologies; EMC in Printed Circuit Board and System Design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信