用于高效渗透能量收集的具有外在离子传输途径的图灵型纳米通道膜

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kehan Zou, Haoyang Ling, Qingchen Wang, Congcong Zhu, Zhehua Zhang, Dehua Huang, Ke Li, Yuge Wu, Weiwen Xin, Xiang-Yu Kong, Lei Jiang, Liping Wen
{"title":"用于高效渗透能量收集的具有外在离子传输途径的图灵型纳米通道膜","authors":"Kehan Zou, Haoyang Ling, Qingchen Wang, Congcong Zhu, Zhehua Zhang, Dehua Huang, Ke Li, Yuge Wu, Weiwen Xin, Xiang-Yu Kong, Lei Jiang, Liping Wen","doi":"10.1038/s41467-024-54622-2","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) nanofluidic channels with confined transport pathways and abundant surface functional groups have been extensively investigated to achieve osmotic energy harvesting. However, solely relying on intrinsic interlayer channels results in insufficient permeability, thereby limiting the output power densities, which poses a significant challenge to the widespread application of these materials. Herein, we present a nanoconfined sacrificial template (NST) strategy to create a crafted channel structure, termed as Turing-type nanochannels, within the membrane. Extrinsic interlaced channels are formed between the lamellae using copper hydroxide nanowires as sacrificial templates. These Turing-type nanochannels significantly increase transport pathways and functional areas, resulting in a 23% enhancement in ionic current while maintaining a cation selectivity of 0.91. The output power density of the Turing-type nanochannel membrane increases from 3.9 to 5.9 W m<sup>−2</sup> and remains stable for at least 120 hours. This membrane exhibits enhanced applicability in real saltwater environments across China, achieving output power densities of 7.7 W m<sup>−2</sup> in natural seawater and 9.8 W m<sup>−2</sup> in salt-lake brine. This work demonstrates the promising potential of the Turing-channel design for nanoconfined ionic transport in the energy conversion field.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turing-type nanochannel membranes with extrinsic ion transport pathways for high-efficiency osmotic energy harvesting\",\"authors\":\"Kehan Zou, Haoyang Ling, Qingchen Wang, Congcong Zhu, Zhehua Zhang, Dehua Huang, Ke Li, Yuge Wu, Weiwen Xin, Xiang-Yu Kong, Lei Jiang, Liping Wen\",\"doi\":\"10.1038/s41467-024-54622-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two-dimensional (2D) nanofluidic channels with confined transport pathways and abundant surface functional groups have been extensively investigated to achieve osmotic energy harvesting. However, solely relying on intrinsic interlayer channels results in insufficient permeability, thereby limiting the output power densities, which poses a significant challenge to the widespread application of these materials. Herein, we present a nanoconfined sacrificial template (NST) strategy to create a crafted channel structure, termed as Turing-type nanochannels, within the membrane. Extrinsic interlaced channels are formed between the lamellae using copper hydroxide nanowires as sacrificial templates. These Turing-type nanochannels significantly increase transport pathways and functional areas, resulting in a 23% enhancement in ionic current while maintaining a cation selectivity of 0.91. The output power density of the Turing-type nanochannel membrane increases from 3.9 to 5.9 W m<sup>−2</sup> and remains stable for at least 120 hours. This membrane exhibits enhanced applicability in real saltwater environments across China, achieving output power densities of 7.7 W m<sup>−2</sup> in natural seawater and 9.8 W m<sup>−2</sup> in salt-lake brine. This work demonstrates the promising potential of the Turing-channel design for nanoconfined ionic transport in the energy conversion field.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54622-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54622-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)纳米流体通道具有封闭的传输通道和丰富的表面官能团,已被广泛研究用于实现渗透能量收集。然而,仅仅依靠固有的层间通道会导致渗透性不足,从而限制输出功率密度,这对这些材料的广泛应用构成了重大挑战。在此,我们提出了一种纳米封闭牺牲模板(NST)策略,以在膜内创建一种精心制作的通道结构,称为图灵型纳米通道。使用氢氧化铜纳米线作为牺牲模板,在薄片之间形成外在交错通道。这些图灵型纳米通道大大增加了传输路径和功能区域,使离子电流提高了 23%,同时保持了 0.91 的阳离子选择性。图灵型纳米通道膜的输出功率密度从 3.9 W m-2 增加到 5.9 W m-2,并至少能保持稳定 120 小时。该膜在中国各地的实际海水环境中表现出更强的适用性,在天然海水中的输出功率密度达到 7.7 W m-2,在盐湖卤水中的输出功率密度达到 9.8 W m-2。这项工作表明,图灵通道设计在能量转换领域的纳米离子传输方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Turing-type nanochannel membranes with extrinsic ion transport pathways for high-efficiency osmotic energy harvesting

Turing-type nanochannel membranes with extrinsic ion transport pathways for high-efficiency osmotic energy harvesting

Two-dimensional (2D) nanofluidic channels with confined transport pathways and abundant surface functional groups have been extensively investigated to achieve osmotic energy harvesting. However, solely relying on intrinsic interlayer channels results in insufficient permeability, thereby limiting the output power densities, which poses a significant challenge to the widespread application of these materials. Herein, we present a nanoconfined sacrificial template (NST) strategy to create a crafted channel structure, termed as Turing-type nanochannels, within the membrane. Extrinsic interlaced channels are formed between the lamellae using copper hydroxide nanowires as sacrificial templates. These Turing-type nanochannels significantly increase transport pathways and functional areas, resulting in a 23% enhancement in ionic current while maintaining a cation selectivity of 0.91. The output power density of the Turing-type nanochannel membrane increases from 3.9 to 5.9 W m−2 and remains stable for at least 120 hours. This membrane exhibits enhanced applicability in real saltwater environments across China, achieving output power densities of 7.7 W m−2 in natural seawater and 9.8 W m−2 in salt-lake brine. This work demonstrates the promising potential of the Turing-channel design for nanoconfined ionic transport in the energy conversion field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信