Mudassar Shehzad , Sohail Ahmed , Faisal Siddiqui , Syed Zaighum Abbas Bukhari , Fahad Bin Zahid , Farooq Akram , Adeela Nasreen , Jiabao Yi
{"title":"聚合物混合物中与频率相关的铁电热循环:P(VDF-TrFE) 和 P(VDF-TrFE-CTFE) 电致冷性能的提高","authors":"Mudassar Shehzad , Sohail Ahmed , Faisal Siddiqui , Syed Zaighum Abbas Bukhari , Fahad Bin Zahid , Farooq Akram , Adeela Nasreen , Jiabao Yi","doi":"10.1016/j.polymer.2024.127881","DOIUrl":null,"url":null,"abstract":"<div><div>Copolymer (P(VDF-TrFE-CTFE)) and terpolymer (P(VDF-TrFE)) have been widely investigated for their promising electrocaloric effect (ECE), whereas, their mixture of ECE has not been investigated. In this work, P(VDF-TrFE was mixed with a variety of concentrations of P(VDF-TrFE-CTFE) and its ECE effect was investigated in detail. Results indicated that after mixing of the copolymer, an additional change of adiabatic temperature (T + Tad) could be obtained. Moreover, the energy density (N<sub>D</sub>) is drastically enhanced when the copolymer concentration increases up to 3 % due to antiferroelectric behavior of polymer blends (i.e. Copolymer content = 30 wt%). In addition, we observed that we can tune the working of frequency dependent ferroelectric heat cycle instead of pyroelectric heat cycle by changing the operational frequency in antiferroelectric range and the rejection of output heat is increased by decreasing the operational frequency (from 10<sup>−2</sup>Hz to 10<sup>2</sup> Hz). And we propose to use ΔT Vs E loop as the criteria to explain the ferroelectric heat cycle. Using this novel technique, we could successfully compare the efficiency of heat cycles. Three times higher efficiency of ΔT-E loop at low frequency (10<sup>−2</sup> Hz) was achieved due to the blend's antiferroelectric behavior.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"316 ","pages":"Article 127881"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency-dependent ferroelectric heat cycles in polymer blends: Enhancements in electrocaloric performance of P(VDF-TrFE) and P(VDF-TrFE-CTFE)\",\"authors\":\"Mudassar Shehzad , Sohail Ahmed , Faisal Siddiqui , Syed Zaighum Abbas Bukhari , Fahad Bin Zahid , Farooq Akram , Adeela Nasreen , Jiabao Yi\",\"doi\":\"10.1016/j.polymer.2024.127881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Copolymer (P(VDF-TrFE-CTFE)) and terpolymer (P(VDF-TrFE)) have been widely investigated for their promising electrocaloric effect (ECE), whereas, their mixture of ECE has not been investigated. In this work, P(VDF-TrFE was mixed with a variety of concentrations of P(VDF-TrFE-CTFE) and its ECE effect was investigated in detail. Results indicated that after mixing of the copolymer, an additional change of adiabatic temperature (T + Tad) could be obtained. Moreover, the energy density (N<sub>D</sub>) is drastically enhanced when the copolymer concentration increases up to 3 % due to antiferroelectric behavior of polymer blends (i.e. Copolymer content = 30 wt%). In addition, we observed that we can tune the working of frequency dependent ferroelectric heat cycle instead of pyroelectric heat cycle by changing the operational frequency in antiferroelectric range and the rejection of output heat is increased by decreasing the operational frequency (from 10<sup>−2</sup>Hz to 10<sup>2</sup> Hz). And we propose to use ΔT Vs E loop as the criteria to explain the ferroelectric heat cycle. Using this novel technique, we could successfully compare the efficiency of heat cycles. Three times higher efficiency of ΔT-E loop at low frequency (10<sup>−2</sup> Hz) was achieved due to the blend's antiferroelectric behavior.</div></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":\"316 \",\"pages\":\"Article 127881\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386124012175\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124012175","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Frequency-dependent ferroelectric heat cycles in polymer blends: Enhancements in electrocaloric performance of P(VDF-TrFE) and P(VDF-TrFE-CTFE)
Copolymer (P(VDF-TrFE-CTFE)) and terpolymer (P(VDF-TrFE)) have been widely investigated for their promising electrocaloric effect (ECE), whereas, their mixture of ECE has not been investigated. In this work, P(VDF-TrFE was mixed with a variety of concentrations of P(VDF-TrFE-CTFE) and its ECE effect was investigated in detail. Results indicated that after mixing of the copolymer, an additional change of adiabatic temperature (T + Tad) could be obtained. Moreover, the energy density (ND) is drastically enhanced when the copolymer concentration increases up to 3 % due to antiferroelectric behavior of polymer blends (i.e. Copolymer content = 30 wt%). In addition, we observed that we can tune the working of frequency dependent ferroelectric heat cycle instead of pyroelectric heat cycle by changing the operational frequency in antiferroelectric range and the rejection of output heat is increased by decreasing the operational frequency (from 10−2Hz to 102 Hz). And we propose to use ΔT Vs E loop as the criteria to explain the ferroelectric heat cycle. Using this novel technique, we could successfully compare the efficiency of heat cycles. Three times higher efficiency of ΔT-E loop at low frequency (10−2 Hz) was achieved due to the blend's antiferroelectric behavior.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.