Frank J P Hoebers, Leonard Wee, Jirapat Likitlersuang, Raymond H Mak, Danielle S Bitterman, Yanqi Huang, Andre Dekker, Hugo J W L Aerts, Benjamin H Kann
{"title":"放射肿瘤学中的人工智能研究:临床医师概念和方法实用指南》。","authors":"Frank J P Hoebers, Leonard Wee, Jirapat Likitlersuang, Raymond H Mak, Danielle S Bitterman, Yanqi Huang, Andre Dekker, Hugo J W L Aerts, Benjamin H Kann","doi":"10.1093/bjro/tzae039","DOIUrl":null,"url":null,"abstract":"<p><p>The use of artificial intelligence (AI) holds great promise for radiation oncology, with many applications being reported in the literature, including some of which are already in clinical use. These are mainly in areas where AI provides benefits in efficiency (such as automatic segmentation and treatment planning). Prediction models that directly impact patient decision-making are far less mature in terms of their application in clinical practice. Part of the limited clinical uptake of these models may be explained by the need for broader knowledge, among practising clinicians within the medical community, about the processes of AI development. This lack of understanding could lead to low commitment to AI research, widespread scepticism, and low levels of trust. This attitude towards AI may be further negatively impacted by the perception that deep learning is a \"black box\" with inherently low transparency. Thus, there is an unmet need to train current and future clinicians in the development and application of AI in medicine. Improving clinicians' AI-related knowledge and skills is necessary to enhance multidisciplinary collaboration between data scientists and physicians, that is, involving a clinician in the loop during AI development. Increased knowledge may also positively affect the acceptance and trust of AI. This paper describes the necessary steps involved in AI research and development, and thus identifies the possibilities, limitations, challenges, and opportunities, as seen from the perspective of a practising radiation oncologist. It offers the clinician with limited knowledge and experience in AI valuable tools to evaluate research papers related to an AI model application.</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"6 1","pages":"tzae039"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585305/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence research in radiation oncology: a practical guide for the clinician on concepts and methods.\",\"authors\":\"Frank J P Hoebers, Leonard Wee, Jirapat Likitlersuang, Raymond H Mak, Danielle S Bitterman, Yanqi Huang, Andre Dekker, Hugo J W L Aerts, Benjamin H Kann\",\"doi\":\"10.1093/bjro/tzae039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of artificial intelligence (AI) holds great promise for radiation oncology, with many applications being reported in the literature, including some of which are already in clinical use. These are mainly in areas where AI provides benefits in efficiency (such as automatic segmentation and treatment planning). Prediction models that directly impact patient decision-making are far less mature in terms of their application in clinical practice. Part of the limited clinical uptake of these models may be explained by the need for broader knowledge, among practising clinicians within the medical community, about the processes of AI development. This lack of understanding could lead to low commitment to AI research, widespread scepticism, and low levels of trust. This attitude towards AI may be further negatively impacted by the perception that deep learning is a \\\"black box\\\" with inherently low transparency. Thus, there is an unmet need to train current and future clinicians in the development and application of AI in medicine. Improving clinicians' AI-related knowledge and skills is necessary to enhance multidisciplinary collaboration between data scientists and physicians, that is, involving a clinician in the loop during AI development. Increased knowledge may also positively affect the acceptance and trust of AI. This paper describes the necessary steps involved in AI research and development, and thus identifies the possibilities, limitations, challenges, and opportunities, as seen from the perspective of a practising radiation oncologist. It offers the clinician with limited knowledge and experience in AI valuable tools to evaluate research papers related to an AI model application.</p>\",\"PeriodicalId\":72419,\"journal\":{\"name\":\"BJR open\",\"volume\":\"6 1\",\"pages\":\"tzae039\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585305/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BJR open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bjro/tzae039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJR open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bjro/tzae039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Artificial intelligence research in radiation oncology: a practical guide for the clinician on concepts and methods.
The use of artificial intelligence (AI) holds great promise for radiation oncology, with many applications being reported in the literature, including some of which are already in clinical use. These are mainly in areas where AI provides benefits in efficiency (such as automatic segmentation and treatment planning). Prediction models that directly impact patient decision-making are far less mature in terms of their application in clinical practice. Part of the limited clinical uptake of these models may be explained by the need for broader knowledge, among practising clinicians within the medical community, about the processes of AI development. This lack of understanding could lead to low commitment to AI research, widespread scepticism, and low levels of trust. This attitude towards AI may be further negatively impacted by the perception that deep learning is a "black box" with inherently low transparency. Thus, there is an unmet need to train current and future clinicians in the development and application of AI in medicine. Improving clinicians' AI-related knowledge and skills is necessary to enhance multidisciplinary collaboration between data scientists and physicians, that is, involving a clinician in the loop during AI development. Increased knowledge may also positively affect the acceptance and trust of AI. This paper describes the necessary steps involved in AI research and development, and thus identifies the possibilities, limitations, challenges, and opportunities, as seen from the perspective of a practising radiation oncologist. It offers the clinician with limited knowledge and experience in AI valuable tools to evaluate research papers related to an AI model application.