Baitao Liao, Qiang Gong, Xiaxin Sun, Haolun Liu, Haoran Deng, Yan Cui, Shuang Yu, Xiaotong Yang, Daqing Guo, Yang Xia, Dezhong Yao, Ke Chen
{"title":"小鼠初级视觉皮层伽马节律的上下文依赖性方向不连续性编码","authors":"Baitao Liao, Qiang Gong, Xiaxin Sun, Haolun Liu, Haoran Deng, Yan Cui, Shuang Yu, Xiaotong Yang, Daqing Guo, Yang Xia, Dezhong Yao, Ke Chen","doi":"10.1113/JP286936","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <div>Through the modulation of its surround, an identical visual stimulus can be perceived as more or less salient, allowing it to either stand out or seamlessly integrate with the rest of the visual scene. Gamma rhythms are associated with processing stimulus features across extensive areas of the visual field. Consistent with this concept, the magnitude of visually induced gamma rhythm depends on how well stimulus features aligned both within and outside the classical receptive field (CRF) at the recording site. However, there still exists some uncertainty regarding the encoding of context-modulated orientation discontinuity by gamma rhythms. To address this concern, we conducted extracellular recordings in layers II/III and IV of area V1 using lightly anaesthetized mice to investigate the gamma tuning for stimuli with orientation discontinuity. Our study revealed that gamma rhythms exhibit a preference for stimuli with orientation discontinuity similar to the spiking responses observed in V1, which contradicts the findings of previous studies. Furthermore, the gamma tuning of discontinuous orientations exhibits a moderate correlation with spike tuning and a positive correlation with the strength of surround suppression. Therefore, our study suggests a close association between gamma tuning and nearby spiking tuning; additionally, it highlights the connection between the encoding of visual features by gamma rhythms and functional architecture, as well as neural signal integration.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </div>\n </section>\n \n <section>\n \n <h3> Key points</h3>\n \n <div>\n <ul>\n \n <li>Visual context modulates the gamma rhythms in the primary visual cortex.</li>\n \n <li>Discontinuous orientation elicits significantly enhanced gamma rhythms compared to the iso-orientation stimulus.</li>\n \n <li>The gamma tuning of discontinuous orientations exhibits a moderate correlation with spike tuning.</li>\n \n <li>Gamma tuning of orientation discontinuity exhibits a positive correlation with the strength of surround suppression.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":"602 24","pages":"6959-6972"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context-dependent orientation discontinuity encoding by gamma rhythms in mouse primary visual cortex\",\"authors\":\"Baitao Liao, Qiang Gong, Xiaxin Sun, Haolun Liu, Haoran Deng, Yan Cui, Shuang Yu, Xiaotong Yang, Daqing Guo, Yang Xia, Dezhong Yao, Ke Chen\",\"doi\":\"10.1113/JP286936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n \\n <div>Through the modulation of its surround, an identical visual stimulus can be perceived as more or less salient, allowing it to either stand out or seamlessly integrate with the rest of the visual scene. Gamma rhythms are associated with processing stimulus features across extensive areas of the visual field. Consistent with this concept, the magnitude of visually induced gamma rhythm depends on how well stimulus features aligned both within and outside the classical receptive field (CRF) at the recording site. However, there still exists some uncertainty regarding the encoding of context-modulated orientation discontinuity by gamma rhythms. To address this concern, we conducted extracellular recordings in layers II/III and IV of area V1 using lightly anaesthetized mice to investigate the gamma tuning for stimuli with orientation discontinuity. Our study revealed that gamma rhythms exhibit a preference for stimuli with orientation discontinuity similar to the spiking responses observed in V1, which contradicts the findings of previous studies. Furthermore, the gamma tuning of discontinuous orientations exhibits a moderate correlation with spike tuning and a positive correlation with the strength of surround suppression. Therefore, our study suggests a close association between gamma tuning and nearby spiking tuning; additionally, it highlights the connection between the encoding of visual features by gamma rhythms and functional architecture, as well as neural signal integration.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </div>\\n </section>\\n \\n <section>\\n \\n <h3> Key points</h3>\\n \\n <div>\\n <ul>\\n \\n <li>Visual context modulates the gamma rhythms in the primary visual cortex.</li>\\n \\n <li>Discontinuous orientation elicits significantly enhanced gamma rhythms compared to the iso-orientation stimulus.</li>\\n \\n <li>The gamma tuning of discontinuous orientations exhibits a moderate correlation with spike tuning.</li>\\n \\n <li>Gamma tuning of orientation discontinuity exhibits a positive correlation with the strength of surround suppression.</li>\\n </ul>\\n </div>\\n </section>\\n </div>\",\"PeriodicalId\":50088,\"journal\":{\"name\":\"Journal of Physiology-London\",\"volume\":\"602 24\",\"pages\":\"6959-6972\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-London\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1113/JP286936\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1113/JP286936","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Context-dependent orientation discontinuity encoding by gamma rhythms in mouse primary visual cortex
Through the modulation of its surround, an identical visual stimulus can be perceived as more or less salient, allowing it to either stand out or seamlessly integrate with the rest of the visual scene. Gamma rhythms are associated with processing stimulus features across extensive areas of the visual field. Consistent with this concept, the magnitude of visually induced gamma rhythm depends on how well stimulus features aligned both within and outside the classical receptive field (CRF) at the recording site. However, there still exists some uncertainty regarding the encoding of context-modulated orientation discontinuity by gamma rhythms. To address this concern, we conducted extracellular recordings in layers II/III and IV of area V1 using lightly anaesthetized mice to investigate the gamma tuning for stimuli with orientation discontinuity. Our study revealed that gamma rhythms exhibit a preference for stimuli with orientation discontinuity similar to the spiking responses observed in V1, which contradicts the findings of previous studies. Furthermore, the gamma tuning of discontinuous orientations exhibits a moderate correlation with spike tuning and a positive correlation with the strength of surround suppression. Therefore, our study suggests a close association between gamma tuning and nearby spiking tuning; additionally, it highlights the connection between the encoding of visual features by gamma rhythms and functional architecture, as well as neural signal integration.
Key points
Visual context modulates the gamma rhythms in the primary visual cortex.
Discontinuous orientation elicits significantly enhanced gamma rhythms compared to the iso-orientation stimulus.
The gamma tuning of discontinuous orientations exhibits a moderate correlation with spike tuning.
Gamma tuning of orientation discontinuity exhibits a positive correlation with the strength of surround suppression.
期刊介绍:
The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew.
The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.