{"title":"追踪水系统中的药物:关注神经退行性疾病和精神疾病治疗。","authors":"Paula Paíga, Cristina Delerue-Matos","doi":"10.3390/jox14040096","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmaceutical residues in aquatic ecosystems pose significant environmental and public health challenges. Identifying the presence and levels of these pharmaceuticals is crucial. This study developed an analytical method to detect pharmaceuticals used for Alzheimer's (AD) and Parkinson's (PD) disease, including psychiatric drugs and the stimulant caffeine, targeting 30 compounds. Optimized mass spectrometric and liquid chromatographic parameters enabled robust detection and quantification. The methodology was applied to 25 surface and wastewater samples. Twenty-one compounds were detected including eight psychiatric drugs, five metabolites (citalopram N-oxide, citalopram propionic acid, desmethylcitalopram, <i>O</i>-desmethylvenlafaxine, and 10,11-epoxycarbamazepine), and seven AD/PD pharmaceuticals along with caffeine. Nine compounds (apomorphine, benserazide, donepezil, didemethylcitalopram, carbidopa, norfluoxetine, galantamine, pramipexole, and safinamide) were not detected. Fluoxetine was found in all samples, and caffeine had the highest concentration at 76,991 ng/L, reflecting its high consumption. Concentrations ranged from 29.8 to 656 ng/L for caffeine, <MDL to 381 ng/L for psychiatric drugs, and <MDL to 37.1 ng/L for AD and PD pharmaceuticals in surface water. In wastewater, concentrations ranged from 140 to 76,991 ng/L for caffeine, <MDL to 5227 ng/L for psychiatric drugs, and <MDL to 206 ng/L for AD and PD pharmaceuticals. These findings highlight the critical need for comprehensive environmental monitoring.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 4","pages":"1807-1825"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586952/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tracing Pharmaceuticals in Water Systems: Focus on Neurodegenerative and Psychiatric Treatments.\",\"authors\":\"Paula Paíga, Cristina Delerue-Matos\",\"doi\":\"10.3390/jox14040096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pharmaceutical residues in aquatic ecosystems pose significant environmental and public health challenges. Identifying the presence and levels of these pharmaceuticals is crucial. This study developed an analytical method to detect pharmaceuticals used for Alzheimer's (AD) and Parkinson's (PD) disease, including psychiatric drugs and the stimulant caffeine, targeting 30 compounds. Optimized mass spectrometric and liquid chromatographic parameters enabled robust detection and quantification. The methodology was applied to 25 surface and wastewater samples. Twenty-one compounds were detected including eight psychiatric drugs, five metabolites (citalopram N-oxide, citalopram propionic acid, desmethylcitalopram, <i>O</i>-desmethylvenlafaxine, and 10,11-epoxycarbamazepine), and seven AD/PD pharmaceuticals along with caffeine. Nine compounds (apomorphine, benserazide, donepezil, didemethylcitalopram, carbidopa, norfluoxetine, galantamine, pramipexole, and safinamide) were not detected. Fluoxetine was found in all samples, and caffeine had the highest concentration at 76,991 ng/L, reflecting its high consumption. Concentrations ranged from 29.8 to 656 ng/L for caffeine, <MDL to 381 ng/L for psychiatric drugs, and <MDL to 37.1 ng/L for AD and PD pharmaceuticals in surface water. In wastewater, concentrations ranged from 140 to 76,991 ng/L for caffeine, <MDL to 5227 ng/L for psychiatric drugs, and <MDL to 206 ng/L for AD and PD pharmaceuticals. These findings highlight the critical need for comprehensive environmental monitoring.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"14 4\",\"pages\":\"1807-1825\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox14040096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox14040096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Tracing Pharmaceuticals in Water Systems: Focus on Neurodegenerative and Psychiatric Treatments.
Pharmaceutical residues in aquatic ecosystems pose significant environmental and public health challenges. Identifying the presence and levels of these pharmaceuticals is crucial. This study developed an analytical method to detect pharmaceuticals used for Alzheimer's (AD) and Parkinson's (PD) disease, including psychiatric drugs and the stimulant caffeine, targeting 30 compounds. Optimized mass spectrometric and liquid chromatographic parameters enabled robust detection and quantification. The methodology was applied to 25 surface and wastewater samples. Twenty-one compounds were detected including eight psychiatric drugs, five metabolites (citalopram N-oxide, citalopram propionic acid, desmethylcitalopram, O-desmethylvenlafaxine, and 10,11-epoxycarbamazepine), and seven AD/PD pharmaceuticals along with caffeine. Nine compounds (apomorphine, benserazide, donepezil, didemethylcitalopram, carbidopa, norfluoxetine, galantamine, pramipexole, and safinamide) were not detected. Fluoxetine was found in all samples, and caffeine had the highest concentration at 76,991 ng/L, reflecting its high consumption. Concentrations ranged from 29.8 to 656 ng/L for caffeine,
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.