Maxime Bouvier, Samanta Freire, Jacqueline Findlay, Patrice Nordmann
{"title":"二巯丁二酸与碳青霉烯类药物联用对耐碳青霉烯类铜绿假单胞菌的体外活性","authors":"Maxime Bouvier, Samanta Freire, Jacqueline Findlay, Patrice Nordmann","doi":"10.1089/mdr.2024.0104","DOIUrl":null,"url":null,"abstract":"<p><p>Carbapenenemase producers, particularly the metallo-β-lactamase (MBL) types in <i>Pseudomonas aeruginosa</i>, have emerged as an urgent threat in health care settings. MBLs require zinc at their catalytic site and can be inhibited by dimercaptosuccinic acid (DMSA), a metal chelator known for the treatment of lead and mercury intoxication. Isogenic strains of wild-type and OprD-deleted <i>P. aeruginosa</i> PA14, were constructed, producing the MBLs VIM-2, NDM-1, SPM-1, IMP-1, and AIM-1, or the non-MBL carbapenemases, GES-5 and KPC-2. In addition, 59 previously characterized clinical isolates of <i>P. aeruginosa</i> producing different ß-lactamases (including carbapenemases), and with known outer-membrane porin OprD status, were utilized. Minimal inhibitory concentrations values of imipenem and meropenem, and DMSA combinations were determined, and time-kill assays were performed with PA14 expressing VIM-2. Results indicated a significant additive effect of DMSA (most effective at 3 mM) and carbapenems in recombinant and clinical strains of <i>P. aeruginosa</i> expressing MBLs, in particular against VIM producers, which are the most prevalent carbapenemases in <i>P. aeruginosa</i>. This effect was best evidenced with meropenem and in strains without OprD modification. DMSA shows promising efficacy, particularly in combination therapy with meropenem, for treating infections caused by MBL-producing <i>P. aeruginosa</i>.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In-Vitro</i> Activity of Dimercaptosuccinic Acid in Combination with Carbapenems Against Carbapenem-Resistant <i>Pseudomonas aeruginosa</i>.\",\"authors\":\"Maxime Bouvier, Samanta Freire, Jacqueline Findlay, Patrice Nordmann\",\"doi\":\"10.1089/mdr.2024.0104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbapenenemase producers, particularly the metallo-β-lactamase (MBL) types in <i>Pseudomonas aeruginosa</i>, have emerged as an urgent threat in health care settings. MBLs require zinc at their catalytic site and can be inhibited by dimercaptosuccinic acid (DMSA), a metal chelator known for the treatment of lead and mercury intoxication. Isogenic strains of wild-type and OprD-deleted <i>P. aeruginosa</i> PA14, were constructed, producing the MBLs VIM-2, NDM-1, SPM-1, IMP-1, and AIM-1, or the non-MBL carbapenemases, GES-5 and KPC-2. In addition, 59 previously characterized clinical isolates of <i>P. aeruginosa</i> producing different ß-lactamases (including carbapenemases), and with known outer-membrane porin OprD status, were utilized. Minimal inhibitory concentrations values of imipenem and meropenem, and DMSA combinations were determined, and time-kill assays were performed with PA14 expressing VIM-2. Results indicated a significant additive effect of DMSA (most effective at 3 mM) and carbapenems in recombinant and clinical strains of <i>P. aeruginosa</i> expressing MBLs, in particular against VIM producers, which are the most prevalent carbapenemases in <i>P. aeruginosa</i>. This effect was best evidenced with meropenem and in strains without OprD modification. DMSA shows promising efficacy, particularly in combination therapy with meropenem, for treating infections caused by MBL-producing <i>P. aeruginosa</i>.</p>\",\"PeriodicalId\":18701,\"journal\":{\"name\":\"Microbial drug resistance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial drug resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/mdr.2024.0104\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2024.0104","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
In-Vitro Activity of Dimercaptosuccinic Acid in Combination with Carbapenems Against Carbapenem-Resistant Pseudomonas aeruginosa.
Carbapenenemase producers, particularly the metallo-β-lactamase (MBL) types in Pseudomonas aeruginosa, have emerged as an urgent threat in health care settings. MBLs require zinc at their catalytic site and can be inhibited by dimercaptosuccinic acid (DMSA), a metal chelator known for the treatment of lead and mercury intoxication. Isogenic strains of wild-type and OprD-deleted P. aeruginosa PA14, were constructed, producing the MBLs VIM-2, NDM-1, SPM-1, IMP-1, and AIM-1, or the non-MBL carbapenemases, GES-5 and KPC-2. In addition, 59 previously characterized clinical isolates of P. aeruginosa producing different ß-lactamases (including carbapenemases), and with known outer-membrane porin OprD status, were utilized. Minimal inhibitory concentrations values of imipenem and meropenem, and DMSA combinations were determined, and time-kill assays were performed with PA14 expressing VIM-2. Results indicated a significant additive effect of DMSA (most effective at 3 mM) and carbapenems in recombinant and clinical strains of P. aeruginosa expressing MBLs, in particular against VIM producers, which are the most prevalent carbapenemases in P. aeruginosa. This effect was best evidenced with meropenem and in strains without OprD modification. DMSA shows promising efficacy, particularly in combination therapy with meropenem, for treating infections caused by MBL-producing P. aeruginosa.
期刊介绍:
Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports.
MDR coverage includes:
Molecular biology of resistance mechanisms
Virulence genes and disease
Molecular epidemiology
Drug design
Infection control.