{"title":"牙本质小管作为长期缓释载体,通过装载 FTY720 加快骨修复。","authors":"Jiaman Xie , Haohui Huang , Shijing Xu , Keyi Zhou , Xiaofeng Chen , Jingxian Fang , Fujian Zhao","doi":"10.1016/j.jconrel.2024.11.051","DOIUrl":null,"url":null,"abstract":"<div><div>The controlled release of drugs remains a huge challenge in the field of tissue engineering. Current research focuses on the construction of drug carriers by using various advanced technologies. However, the pore-like structure that exists within our human body is ignored. Herein, a dental particle loaded with FTY720 by using dentin tubules (Dent-FTY720) was successfully prepared, which could achieve long-term sustained release of drugs. Meanwhile, Dent-FTY720 significantly promoted bone defect repair because of the similarity in composition to bone including hydroxyapatite and collagen. Furthermore, the loaded drugs exhibited both anti-immune and anti-inflammatory properties. This research introduces a novel concept in drug loading, highlighting the potential of dentin tubules as a drug delivery system.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"377 ","pages":"Pages 446-457"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dentin tubules as a long-term sustained release carrier to accelerate bone repair by loading FTY720\",\"authors\":\"Jiaman Xie , Haohui Huang , Shijing Xu , Keyi Zhou , Xiaofeng Chen , Jingxian Fang , Fujian Zhao\",\"doi\":\"10.1016/j.jconrel.2024.11.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The controlled release of drugs remains a huge challenge in the field of tissue engineering. Current research focuses on the construction of drug carriers by using various advanced technologies. However, the pore-like structure that exists within our human body is ignored. Herein, a dental particle loaded with FTY720 by using dentin tubules (Dent-FTY720) was successfully prepared, which could achieve long-term sustained release of drugs. Meanwhile, Dent-FTY720 significantly promoted bone defect repair because of the similarity in composition to bone including hydroxyapatite and collagen. Furthermore, the loaded drugs exhibited both anti-immune and anti-inflammatory properties. This research introduces a novel concept in drug loading, highlighting the potential of dentin tubules as a drug delivery system.</div></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":\"377 \",\"pages\":\"Pages 446-457\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016836592400806X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016836592400806X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dentin tubules as a long-term sustained release carrier to accelerate bone repair by loading FTY720
The controlled release of drugs remains a huge challenge in the field of tissue engineering. Current research focuses on the construction of drug carriers by using various advanced technologies. However, the pore-like structure that exists within our human body is ignored. Herein, a dental particle loaded with FTY720 by using dentin tubules (Dent-FTY720) was successfully prepared, which could achieve long-term sustained release of drugs. Meanwhile, Dent-FTY720 significantly promoted bone defect repair because of the similarity in composition to bone including hydroxyapatite and collagen. Furthermore, the loaded drugs exhibited both anti-immune and anti-inflammatory properties. This research introduces a novel concept in drug loading, highlighting the potential of dentin tubules as a drug delivery system.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.