甲基-β-环糊精可恢复老龄 C57BL/6 小鼠骨髓基质细胞中异常的骨形态发生蛋白 2 信号传导。

IF 2.2 Q3 DEVELOPMENTAL BIOLOGY
Daniel Halloran, Venu Pandit, Kelechi Chukwuocha, Anja Nohe
{"title":"甲基-β-环糊精可恢复老龄 C57BL/6 小鼠骨髓基质细胞中异常的骨形态发生蛋白 2 信号传导。","authors":"Daniel Halloran, Venu Pandit, Kelechi Chukwuocha, Anja Nohe","doi":"10.3390/jdb12040030","DOIUrl":null,"url":null,"abstract":"<p><p>During aging, disruptions in various signaling pathways become more common. Some older patients will exhibit irregular bone morphogenetic protein (BMP) signaling, which can lead to osteoporosis (OP)-a debilitating bone disease resulting from an imbalance between osteoblasts and osteoclasts. In 2002, the Food and Drug Administration (FDA) approved recombinant human BMP-2 (rhBMP-2) for use in spinal fusion surgeries as it is required for bone formation. However, complications with rhBMP-2 arose and primary osteoblasts from OP patients often fail to respond to BMP-2. Although patient samples are available for study, previous medical histories can impact results. Consequently, the C57BL/6 mouse line serves as a valuable model for studying OP and aging. We find that BMP receptor type Ia (BMPRIa) is upregulated in the bone marrow stromal cells (BMSCs) of 15-month-old mice, consistent with prior data. Furthermore, conjugating BMP-2 with Quantum Dots (QDot<sup>®</sup>s) allows effective binding to BMPRIa, creating a fluorescent tag for BMP-2. Furthermore, after treating BMSCs with methyl-β-cyclodextrin (MβCD), a disruptor of cellular endocytosis, BMP signaling is restored in 15-month-old mice, as shown by von Kossa assays. MβCD has the potential to restore BMPRIa function, and the BMP signaling pathway offers a promising avenue for future OP therapies.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"12 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586967/pdf/","citationCount":"0","resultStr":"{\"title\":\"Methyl-Beta-Cyclodextrin Restores Aberrant Bone Morphogenetic Protein 2-Signaling in Bone Marrow Stromal Cells Obtained from Aged C57BL/6 Mice.\",\"authors\":\"Daniel Halloran, Venu Pandit, Kelechi Chukwuocha, Anja Nohe\",\"doi\":\"10.3390/jdb12040030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During aging, disruptions in various signaling pathways become more common. Some older patients will exhibit irregular bone morphogenetic protein (BMP) signaling, which can lead to osteoporosis (OP)-a debilitating bone disease resulting from an imbalance between osteoblasts and osteoclasts. In 2002, the Food and Drug Administration (FDA) approved recombinant human BMP-2 (rhBMP-2) for use in spinal fusion surgeries as it is required for bone formation. However, complications with rhBMP-2 arose and primary osteoblasts from OP patients often fail to respond to BMP-2. Although patient samples are available for study, previous medical histories can impact results. Consequently, the C57BL/6 mouse line serves as a valuable model for studying OP and aging. We find that BMP receptor type Ia (BMPRIa) is upregulated in the bone marrow stromal cells (BMSCs) of 15-month-old mice, consistent with prior data. Furthermore, conjugating BMP-2 with Quantum Dots (QDot<sup>®</sup>s) allows effective binding to BMPRIa, creating a fluorescent tag for BMP-2. Furthermore, after treating BMSCs with methyl-β-cyclodextrin (MβCD), a disruptor of cellular endocytosis, BMP signaling is restored in 15-month-old mice, as shown by von Kossa assays. MβCD has the potential to restore BMPRIa function, and the BMP signaling pathway offers a promising avenue for future OP therapies.</p>\",\"PeriodicalId\":15563,\"journal\":{\"name\":\"Journal of Developmental Biology\",\"volume\":\"12 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586967/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jdb12040030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb12040030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在衰老过程中,各种信号通路的中断变得越来越常见。一些老年患者会表现出不规则的骨形态发生蛋白(BMP)信号传导,这可能会导致骨质疏松症(OP)--一种由于成骨细胞和破骨细胞之间失衡而导致的衰弱性骨病。2002 年,美国食品和药物管理局(FDA)批准在脊柱融合手术中使用重组人 BMP-2(rhBMP-2),因为骨形成需要它。然而,rhBMP-2 出现了并发症,OP 患者的原代成骨细胞往往对 BMP-2 没有反应。虽然患者样本可用于研究,但既往病史会影响研究结果。因此,C57BL/6小鼠系是研究OP和衰老的宝贵模型。我们发现,15 个月大小鼠的骨髓基质细胞(BMSCs)中 BMP 受体 Ia 型(BMPRIa)上调,这与之前的数据一致。此外,将 BMP-2 与量子点(QDot®s)共轭可与 BMPRIa 有效结合,形成 BMP-2 的荧光标签。此外,用甲基-β-环糊精(Methyl-β-cyclodextrin,MβCD)(一种细胞内吞的干扰物)处理 BMSCs 后,15 个月大的小鼠体内的 BMP 信号得到恢复,这一点已在 von Kossa 试验中得到证实。MβCD有可能恢复BMPRIa的功能,BMP信号通路为未来的OP疗法提供了一个前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methyl-Beta-Cyclodextrin Restores Aberrant Bone Morphogenetic Protein 2-Signaling in Bone Marrow Stromal Cells Obtained from Aged C57BL/6 Mice.

During aging, disruptions in various signaling pathways become more common. Some older patients will exhibit irregular bone morphogenetic protein (BMP) signaling, which can lead to osteoporosis (OP)-a debilitating bone disease resulting from an imbalance between osteoblasts and osteoclasts. In 2002, the Food and Drug Administration (FDA) approved recombinant human BMP-2 (rhBMP-2) for use in spinal fusion surgeries as it is required for bone formation. However, complications with rhBMP-2 arose and primary osteoblasts from OP patients often fail to respond to BMP-2. Although patient samples are available for study, previous medical histories can impact results. Consequently, the C57BL/6 mouse line serves as a valuable model for studying OP and aging. We find that BMP receptor type Ia (BMPRIa) is upregulated in the bone marrow stromal cells (BMSCs) of 15-month-old mice, consistent with prior data. Furthermore, conjugating BMP-2 with Quantum Dots (QDot®s) allows effective binding to BMPRIa, creating a fluorescent tag for BMP-2. Furthermore, after treating BMSCs with methyl-β-cyclodextrin (MβCD), a disruptor of cellular endocytosis, BMP signaling is restored in 15-month-old mice, as shown by von Kossa assays. MβCD has the potential to restore BMPRIa function, and the BMP signaling pathway offers a promising avenue for future OP therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Developmental Biology
Journal of Developmental Biology Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
4.10
自引率
18.50%
发文量
44
审稿时长
11 weeks
期刊介绍: The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信