Qi Wang, Xiaoxiang Jiang, Xiaoyan Li, Yanzhen Que, Chaoqin Lin
{"title":"基于机器学习的中国东南部乏力性压力性尿失禁预测模型","authors":"Qi Wang, Xiaoxiang Jiang, Xiaoyan Li, Yanzhen Que, Chaoqin Lin","doi":"10.1007/s00192-024-05983-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction and hypothesis: </strong>Accurate identification of female populations at high risk for urinary incontinence (UI) and early intervention are potentially effective initiatives to reduce the prevalence of UI. We aimed to apply machine-learning techniques to establish, internally validate, and provide interpretable risk assessment tools.</p><p><strong>Methods: </strong>Data from a cross-sectional epidemiological survey of female urinary incontinence conducted in 2022 were used. Sociodemographic and obstetrics-related characteristics, comorbidities, and urinary incontinence questionnaire results were used to develop multiple prediction models. Seventy percent of the individuals in the study cohort were employed in model training, and the remainder were used for internal validation. Model performance was characterized by area under the receiver-operating characteristic curve (AUC) and calibration curves, as well as Brier scores. The best-performing model was finally selected to develop an online prediction tool.</p><p><strong>Results: </strong>The results showed that bothersome stress urinary incontinence (BSUI) occurred in 9.6% (849 out of 8,830) of parous women. The XGBoost model achieved the best prediction performance (training set: AUC 0.796, 95% confidence interval [CI]: 0.778-0.815, validation set: AUC 0.720, 95% CI: 0.686-0.754). Additionally, the XGBoost model achieved the lowest (best) Brier score among the models, with sensitivity of 0.657, specificity of 0.690, accuracy of 0.688, positive predictive value of 0.231, and negative predictive value of 0.948. Based on this model, the top five risk factors for the development of BSUI among parous women were ranked as follows: body mass index, age, vaginal delivery, constipation, and maximum fetal birth weight. An online calculator was provided for clinical use.</p><p><strong>Conclusion: </strong>The application of machine-learning algorithms provides an acceptable, though not perfect, prediction of BSUI risk among parous women, requiring further validation and improvement in future research.</p>","PeriodicalId":14355,"journal":{"name":"International Urogynecology Journal","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-Learning-Based Predictive Model for Bothersome Stress Urinary Incontinence Among Parous Women in Southeastern China.\",\"authors\":\"Qi Wang, Xiaoxiang Jiang, Xiaoyan Li, Yanzhen Que, Chaoqin Lin\",\"doi\":\"10.1007/s00192-024-05983-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction and hypothesis: </strong>Accurate identification of female populations at high risk for urinary incontinence (UI) and early intervention are potentially effective initiatives to reduce the prevalence of UI. We aimed to apply machine-learning techniques to establish, internally validate, and provide interpretable risk assessment tools.</p><p><strong>Methods: </strong>Data from a cross-sectional epidemiological survey of female urinary incontinence conducted in 2022 were used. Sociodemographic and obstetrics-related characteristics, comorbidities, and urinary incontinence questionnaire results were used to develop multiple prediction models. Seventy percent of the individuals in the study cohort were employed in model training, and the remainder were used for internal validation. Model performance was characterized by area under the receiver-operating characteristic curve (AUC) and calibration curves, as well as Brier scores. The best-performing model was finally selected to develop an online prediction tool.</p><p><strong>Results: </strong>The results showed that bothersome stress urinary incontinence (BSUI) occurred in 9.6% (849 out of 8,830) of parous women. The XGBoost model achieved the best prediction performance (training set: AUC 0.796, 95% confidence interval [CI]: 0.778-0.815, validation set: AUC 0.720, 95% CI: 0.686-0.754). Additionally, the XGBoost model achieved the lowest (best) Brier score among the models, with sensitivity of 0.657, specificity of 0.690, accuracy of 0.688, positive predictive value of 0.231, and negative predictive value of 0.948. Based on this model, the top five risk factors for the development of BSUI among parous women were ranked as follows: body mass index, age, vaginal delivery, constipation, and maximum fetal birth weight. An online calculator was provided for clinical use.</p><p><strong>Conclusion: </strong>The application of machine-learning algorithms provides an acceptable, though not perfect, prediction of BSUI risk among parous women, requiring further validation and improvement in future research.</p>\",\"PeriodicalId\":14355,\"journal\":{\"name\":\"International Urogynecology Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Urogynecology Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00192-024-05983-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Urogynecology Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00192-024-05983-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
Machine-Learning-Based Predictive Model for Bothersome Stress Urinary Incontinence Among Parous Women in Southeastern China.
Introduction and hypothesis: Accurate identification of female populations at high risk for urinary incontinence (UI) and early intervention are potentially effective initiatives to reduce the prevalence of UI. We aimed to apply machine-learning techniques to establish, internally validate, and provide interpretable risk assessment tools.
Methods: Data from a cross-sectional epidemiological survey of female urinary incontinence conducted in 2022 were used. Sociodemographic and obstetrics-related characteristics, comorbidities, and urinary incontinence questionnaire results were used to develop multiple prediction models. Seventy percent of the individuals in the study cohort were employed in model training, and the remainder were used for internal validation. Model performance was characterized by area under the receiver-operating characteristic curve (AUC) and calibration curves, as well as Brier scores. The best-performing model was finally selected to develop an online prediction tool.
Results: The results showed that bothersome stress urinary incontinence (BSUI) occurred in 9.6% (849 out of 8,830) of parous women. The XGBoost model achieved the best prediction performance (training set: AUC 0.796, 95% confidence interval [CI]: 0.778-0.815, validation set: AUC 0.720, 95% CI: 0.686-0.754). Additionally, the XGBoost model achieved the lowest (best) Brier score among the models, with sensitivity of 0.657, specificity of 0.690, accuracy of 0.688, positive predictive value of 0.231, and negative predictive value of 0.948. Based on this model, the top five risk factors for the development of BSUI among parous women were ranked as follows: body mass index, age, vaginal delivery, constipation, and maximum fetal birth weight. An online calculator was provided for clinical use.
Conclusion: The application of machine-learning algorithms provides an acceptable, though not perfect, prediction of BSUI risk among parous women, requiring further validation and improvement in future research.
期刊介绍:
The International Urogynecology Journal is the official journal of the International Urogynecological Association (IUGA).The International Urogynecology Journal has evolved in response to a perceived need amongst the clinicians, scientists, and researchers active in the field of urogynecology and pelvic floor disorders. Gynecologists, urologists, physiotherapists, nurses and basic scientists require regular means of communication within this field of pelvic floor dysfunction to express new ideas and research, and to review clinical practice in the diagnosis and treatment of women with disorders of the pelvic floor. This Journal has adopted the peer review process for all original contributions and will maintain high standards with regard to the research published therein. The clinical approach to urogynecology and pelvic floor disorders will be emphasized with each issue containing clinically relevant material that will be immediately applicable for clinical medicine. This publication covers all aspects of the field in an interdisciplinary fashion