表皮生长因子受体有助于雄激素对骨骼肌质量的间接调控。

IF 1.3 4区 医学 Q4 ENDOCRINOLOGY & METABOLISM
Tomoya Onishi, Hiroshi Sakai, Hideaki Uno, Iori Sakakibara, Akiyoshi Uezumi, Mamoru Honda, Tsutomu Kai, Shigeki Higashiyama, Noriyoshi Miura, Tadahiko Kikugawa, Takashi Saika, Yuuki Imai
{"title":"表皮生长因子受体有助于雄激素对骨骼肌质量的间接调控。","authors":"Tomoya Onishi, Hiroshi Sakai, Hideaki Uno, Iori Sakakibara, Akiyoshi Uezumi, Mamoru Honda, Tsutomu Kai, Shigeki Higashiyama, Noriyoshi Miura, Tadahiko Kikugawa, Takashi Saika, Yuuki Imai","doi":"10.1507/endocrj.EJ24-0410","DOIUrl":null,"url":null,"abstract":"<p><p>Androgen is widely acknowledged to regulate skeletal muscle mass. However, the specific mechanism driving muscle atrophy resulting from androgen deficiency remains elusive. Systemic androgen receptor knockout (ARKO) mice exhibit reduction in both muscle strength and muscle mass while skeletal muscle fiber specific ARKO mice have decreased muscle strength without affecting skeletal muscle mass in the limbs. Therefore, androgens may indirectly regulate skeletal muscle mass through effects on non-myofibers. Considering this, our investigation focused on blood fluid factors that might play a role in the regulation of skeletal muscle mass under the influence of androgens. Using a male mouse model of sham, orchidectomy and DHT replacement, mass spectrometry for serum samples of each group identified epidermal growth factor receptor (EGFR) as a candidate protein involving the regulation of skeletal muscle mass affected by androgens. Egfr expression in both liver and epididymal white adipose tissue correlated with androgen levels. Furthermore, Egfr expression in these tissues was predominantly elevated in male compared to female mice. Interestingly, male mice exhibited significantly elevated serum EGFR concentrations compared to their female counterparts, suggesting a connection with androgen levels. Treatment of EGFR to C2C12 cells promoted phosphorylation of AKT and its downstream S6K, and enhanced the protein synthesis in vitro. Furthermore, the administration of EGFR to female mice revealed a potential role in promoting an increase in skeletal muscle mass. These findings collectively enhance our understanding of the complex interplay among androgens, EGFR, and the regulation of skeletal muscle mass.</p>","PeriodicalId":11631,"journal":{"name":"Endocrine journal","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epidermal growth factor receptor contributes to indirect regulation of skeletal muscle mass by androgen.\",\"authors\":\"Tomoya Onishi, Hiroshi Sakai, Hideaki Uno, Iori Sakakibara, Akiyoshi Uezumi, Mamoru Honda, Tsutomu Kai, Shigeki Higashiyama, Noriyoshi Miura, Tadahiko Kikugawa, Takashi Saika, Yuuki Imai\",\"doi\":\"10.1507/endocrj.EJ24-0410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Androgen is widely acknowledged to regulate skeletal muscle mass. However, the specific mechanism driving muscle atrophy resulting from androgen deficiency remains elusive. Systemic androgen receptor knockout (ARKO) mice exhibit reduction in both muscle strength and muscle mass while skeletal muscle fiber specific ARKO mice have decreased muscle strength without affecting skeletal muscle mass in the limbs. Therefore, androgens may indirectly regulate skeletal muscle mass through effects on non-myofibers. Considering this, our investigation focused on blood fluid factors that might play a role in the regulation of skeletal muscle mass under the influence of androgens. Using a male mouse model of sham, orchidectomy and DHT replacement, mass spectrometry for serum samples of each group identified epidermal growth factor receptor (EGFR) as a candidate protein involving the regulation of skeletal muscle mass affected by androgens. Egfr expression in both liver and epididymal white adipose tissue correlated with androgen levels. Furthermore, Egfr expression in these tissues was predominantly elevated in male compared to female mice. Interestingly, male mice exhibited significantly elevated serum EGFR concentrations compared to their female counterparts, suggesting a connection with androgen levels. Treatment of EGFR to C2C12 cells promoted phosphorylation of AKT and its downstream S6K, and enhanced the protein synthesis in vitro. Furthermore, the administration of EGFR to female mice revealed a potential role in promoting an increase in skeletal muscle mass. These findings collectively enhance our understanding of the complex interplay among androgens, EGFR, and the regulation of skeletal muscle mass.</p>\",\"PeriodicalId\":11631,\"journal\":{\"name\":\"Endocrine journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1507/endocrj.EJ24-0410\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1507/endocrj.EJ24-0410","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

雄性激素被广泛认为可以调节骨骼肌质量。然而,雄激素缺乏导致肌肉萎缩的具体机制仍未确定。全身性雄激素受体基因敲除(ARKO)小鼠表现出肌肉力量和肌肉质量的下降,而骨骼肌纤维特异性ARKO小鼠肌肉力量下降,但不影响四肢骨骼肌质量。因此,雄激素可能通过对非肌纤维的影响间接调节骨骼肌质量。有鉴于此,我们的研究重点放在了可能在雄激素影响下调节骨骼肌质量的血液体液因子上。通过对假性、睾丸切除和 DHT 替代的雄性小鼠模型进行研究,对各组血清样本进行质谱分析,发现表皮生长因子受体(EGFR)是受雄激素影响的骨骼肌质量调控的候选蛋白。肝脏和附睾白色脂肪组织中 Egfr 的表达与雄激素水平相关。此外,与雌性小鼠相比,雄性小鼠在这些组织中的 Egfr 表达主要升高。有趣的是,雄性小鼠的血清表皮生长因子受体浓度明显高于雌性小鼠,这表明雄性小鼠的血清表皮生长因子受体与雄激素水平有关。对 C2C12 细胞进行表皮生长因子受体处理可促进 AKT 及其下游 S6K 的磷酸化,并增强体外蛋白质合成。此外,给雌性小鼠注射表皮生长因子受体还揭示了表皮生长因子受体在促进骨骼肌质量增加方面的潜在作用。这些发现共同加深了我们对雄激素、表皮生长因子受体和骨骼肌质量调控之间复杂相互作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epidermal growth factor receptor contributes to indirect regulation of skeletal muscle mass by androgen.

Androgen is widely acknowledged to regulate skeletal muscle mass. However, the specific mechanism driving muscle atrophy resulting from androgen deficiency remains elusive. Systemic androgen receptor knockout (ARKO) mice exhibit reduction in both muscle strength and muscle mass while skeletal muscle fiber specific ARKO mice have decreased muscle strength without affecting skeletal muscle mass in the limbs. Therefore, androgens may indirectly regulate skeletal muscle mass through effects on non-myofibers. Considering this, our investigation focused on blood fluid factors that might play a role in the regulation of skeletal muscle mass under the influence of androgens. Using a male mouse model of sham, orchidectomy and DHT replacement, mass spectrometry for serum samples of each group identified epidermal growth factor receptor (EGFR) as a candidate protein involving the regulation of skeletal muscle mass affected by androgens. Egfr expression in both liver and epididymal white adipose tissue correlated with androgen levels. Furthermore, Egfr expression in these tissues was predominantly elevated in male compared to female mice. Interestingly, male mice exhibited significantly elevated serum EGFR concentrations compared to their female counterparts, suggesting a connection with androgen levels. Treatment of EGFR to C2C12 cells promoted phosphorylation of AKT and its downstream S6K, and enhanced the protein synthesis in vitro. Furthermore, the administration of EGFR to female mice revealed a potential role in promoting an increase in skeletal muscle mass. These findings collectively enhance our understanding of the complex interplay among androgens, EGFR, and the regulation of skeletal muscle mass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Endocrine journal
Endocrine journal 医学-内分泌学与代谢
CiteScore
4.30
自引率
5.00%
发文量
224
审稿时长
1.5 months
期刊介绍: Endocrine Journal is an open access, peer-reviewed online journal with a long history. This journal publishes peer-reviewed research articles in multifaceted fields of basic, translational and clinical endocrinology. Endocrine Journal provides a chance to exchange your ideas, concepts and scientific observations in any area of recent endocrinology. Manuscripts may be submitted as Original Articles, Notes, Rapid Communications or Review Articles. We have a rapid reviewing and editorial decision system and pay a special attention to our quick, truly scientific and frequently-citable publication. Please go through the link for author guideline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信