{"title":"通过基于结构的虚拟筛选发现治疗睾丸癌的新型强效 ATM 和 HDAC2 双靶向抑制剂","authors":"Yashi Ruan, Lixia Guan, Yuting Wang, Yifei Geng, Xiaoran Wang, Miao-Miao Niu, Li Yang, Cen Xu, Zhen Xu","doi":"10.2147/DDDT.S479113","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Dual inhibition of ataxia telangiectasia mutated (ATM) and histone deacetylase 2 (HDAC2) may be a potential strategy to improve antitumor efficacy in testicular cancer.</p><p><strong>Methods: </strong>A combined virtual screening protocol including pharmacophore modeling and molecular docking was used for screening potent dual-target ATM/HDAC2 inhibitors. In order to obtain the optimal lead compound, the dual ATM/HDAC2 inhibitory activity of the screened compounds was further evaluated using enzyme inhibition methods. The binding stability of the optimal compound to the dual targets was verified by molecular dynamics (MD) simulation. MTT assay and in vivo antitumor experiment were performed to validate antitumor efficacy of the optimal compound in testicular cancer.</p><p><strong>Results: </strong>Here, we successfully discovered six potent dual-target ATM/HDAC2 inhibitors (AMHs 1-6), which exhibited good inhibitory activity against both ATM and HDAC2. Among them, AMH-4 showed strong inhibitory activity against both ATM (IC<sub>50</sub> = 1.12 ± 0.03 nM) and HDAC2 (IC<sub>50</sub> = 3.04 ± 0.08 nM). MD simulation indicated that AMH-4 binds to ATM and HDAC2 with satisfactory stability. Importantly, AMH-4 had significant antiproliferative activity on human testicular tumor cells, especially NTERA-2 cL.D1 cells, and no inhibitory effect on normal human testicular cells. In vivo experiments exhibited that AMH-4 was more effective than lartesertib and vorinostat in inhibiting the growth of NTERA-2 cL.D1 xenograft tumors with low toxicity.</p><p><strong>Conclusion: </strong>Overall, these results suggest that AMH-4 is an effective and low toxicity candidate for the treatment of testicular germ cell tumors.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"18 ","pages":"5283-5297"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585990/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovery of a Novel and Potent Dual-Targeting Inhibitor of ATM and HDAC2 Through Structure-Based Virtual Screening for the Treatment of Testicular Cancer.\",\"authors\":\"Yashi Ruan, Lixia Guan, Yuting Wang, Yifei Geng, Xiaoran Wang, Miao-Miao Niu, Li Yang, Cen Xu, Zhen Xu\",\"doi\":\"10.2147/DDDT.S479113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Dual inhibition of ataxia telangiectasia mutated (ATM) and histone deacetylase 2 (HDAC2) may be a potential strategy to improve antitumor efficacy in testicular cancer.</p><p><strong>Methods: </strong>A combined virtual screening protocol including pharmacophore modeling and molecular docking was used for screening potent dual-target ATM/HDAC2 inhibitors. In order to obtain the optimal lead compound, the dual ATM/HDAC2 inhibitory activity of the screened compounds was further evaluated using enzyme inhibition methods. The binding stability of the optimal compound to the dual targets was verified by molecular dynamics (MD) simulation. MTT assay and in vivo antitumor experiment were performed to validate antitumor efficacy of the optimal compound in testicular cancer.</p><p><strong>Results: </strong>Here, we successfully discovered six potent dual-target ATM/HDAC2 inhibitors (AMHs 1-6), which exhibited good inhibitory activity against both ATM and HDAC2. Among them, AMH-4 showed strong inhibitory activity against both ATM (IC<sub>50</sub> = 1.12 ± 0.03 nM) and HDAC2 (IC<sub>50</sub> = 3.04 ± 0.08 nM). MD simulation indicated that AMH-4 binds to ATM and HDAC2 with satisfactory stability. Importantly, AMH-4 had significant antiproliferative activity on human testicular tumor cells, especially NTERA-2 cL.D1 cells, and no inhibitory effect on normal human testicular cells. In vivo experiments exhibited that AMH-4 was more effective than lartesertib and vorinostat in inhibiting the growth of NTERA-2 cL.D1 xenograft tumors with low toxicity.</p><p><strong>Conclusion: </strong>Overall, these results suggest that AMH-4 is an effective and low toxicity candidate for the treatment of testicular germ cell tumors.</p>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":\"18 \",\"pages\":\"5283-5297\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585990/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/DDDT.S479113\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S479113","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Discovery of a Novel and Potent Dual-Targeting Inhibitor of ATM and HDAC2 Through Structure-Based Virtual Screening for the Treatment of Testicular Cancer.
Purpose: Dual inhibition of ataxia telangiectasia mutated (ATM) and histone deacetylase 2 (HDAC2) may be a potential strategy to improve antitumor efficacy in testicular cancer.
Methods: A combined virtual screening protocol including pharmacophore modeling and molecular docking was used for screening potent dual-target ATM/HDAC2 inhibitors. In order to obtain the optimal lead compound, the dual ATM/HDAC2 inhibitory activity of the screened compounds was further evaluated using enzyme inhibition methods. The binding stability of the optimal compound to the dual targets was verified by molecular dynamics (MD) simulation. MTT assay and in vivo antitumor experiment were performed to validate antitumor efficacy of the optimal compound in testicular cancer.
Results: Here, we successfully discovered six potent dual-target ATM/HDAC2 inhibitors (AMHs 1-6), which exhibited good inhibitory activity against both ATM and HDAC2. Among them, AMH-4 showed strong inhibitory activity against both ATM (IC50 = 1.12 ± 0.03 nM) and HDAC2 (IC50 = 3.04 ± 0.08 nM). MD simulation indicated that AMH-4 binds to ATM and HDAC2 with satisfactory stability. Importantly, AMH-4 had significant antiproliferative activity on human testicular tumor cells, especially NTERA-2 cL.D1 cells, and no inhibitory effect on normal human testicular cells. In vivo experiments exhibited that AMH-4 was more effective than lartesertib and vorinostat in inhibiting the growth of NTERA-2 cL.D1 xenograft tumors with low toxicity.
Conclusion: Overall, these results suggest that AMH-4 is an effective and low toxicity candidate for the treatment of testicular germ cell tumors.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.