{"title":"1,25-二羟维生素 D3(钙三醇)和益生菌对鱼藤酮诱导的 SH-SY5Y 细胞神经毒性模型的神经保护作用。","authors":"Fatma Hazan Gul, Nuh Mehmet Bozkurt, Nalan Hakime Nogay, Gokhan Unal","doi":"10.1080/01480545.2024.2429621","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the neuroprotective role of probiotics and 1,25-dyhydroxyvitamin D<sub>3</sub> (calcitriol) against neurotoxicity on rotenone-induced human neuroblastoma cell line SH-SY5Y. Rotenone was administered to induce neurotoxic effects in SH-SY5Y cells. Calcitriol and probiotics were administered at different concentrations as pre- and post-treatment. The thiazolyl blue tetrazolium bromide (MTT) assay was performed to measure cell viability. Intracellular protein levels of antioxidant enzymes (protein tyrosine kinase (PTK), superoxide dismutase (SOD), glutathione peroxidase (GSH), glutathione reductase (GSR), and catalase (CAT)) were determined by the enzyme-linked immunosorbent assay (ELISA). Rotenone (150 nM) reduced (<i>p</i> < 0.001) cell viability compared to control cells. Single and combined pretreatments with probiotics (0.01 mg/ml, 0.05 mg/ml, and 0.1 mg/ml) and calcitriol (1.25 µM, 2.5 µM, and 5 µM) increased (<i>p</i> < 0.05) cell viability compared to rotenone group. In the pre- and post-treatment design, all treatment groups increased the SOD and GSH levels and decreased the GSR levels compared to rotenone. None of the pretreatments reversed the PTK levels (except probiotics: 0.01 mg/ml). Calcitriol (2.5 µM) increased the CAT levels in pretreatment design, and probiotics (0.05 mg/ml and 0.1 mg/ml) increased CAT levels in post-treatment design compared to rotenone group. Calcitriol and probiotics protect against rotenone-induced neurotoxicity in SH-SY5Y cells by decreasing reactive oxygen species (ROS) and increasing antioxidant enzyme parameters. These neuroprotective effects of calcitriol and probiotics against rotenone-induced dopaminergic neurotoxicity provide an experimental basis for their potential clinical use in the treatment of Parkinson's disease (PD).</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"1-12"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The neuroprotective effect of 1,25-dyhydroxyvitamin D<sub>3</sub> (calcitriol) and probiotics on the rotenone-induced neurotoxicity model in SH-SY5Y cells.\",\"authors\":\"Fatma Hazan Gul, Nuh Mehmet Bozkurt, Nalan Hakime Nogay, Gokhan Unal\",\"doi\":\"10.1080/01480545.2024.2429621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the neuroprotective role of probiotics and 1,25-dyhydroxyvitamin D<sub>3</sub> (calcitriol) against neurotoxicity on rotenone-induced human neuroblastoma cell line SH-SY5Y. Rotenone was administered to induce neurotoxic effects in SH-SY5Y cells. Calcitriol and probiotics were administered at different concentrations as pre- and post-treatment. The thiazolyl blue tetrazolium bromide (MTT) assay was performed to measure cell viability. Intracellular protein levels of antioxidant enzymes (protein tyrosine kinase (PTK), superoxide dismutase (SOD), glutathione peroxidase (GSH), glutathione reductase (GSR), and catalase (CAT)) were determined by the enzyme-linked immunosorbent assay (ELISA). Rotenone (150 nM) reduced (<i>p</i> < 0.001) cell viability compared to control cells. Single and combined pretreatments with probiotics (0.01 mg/ml, 0.05 mg/ml, and 0.1 mg/ml) and calcitriol (1.25 µM, 2.5 µM, and 5 µM) increased (<i>p</i> < 0.05) cell viability compared to rotenone group. In the pre- and post-treatment design, all treatment groups increased the SOD and GSH levels and decreased the GSR levels compared to rotenone. None of the pretreatments reversed the PTK levels (except probiotics: 0.01 mg/ml). Calcitriol (2.5 µM) increased the CAT levels in pretreatment design, and probiotics (0.05 mg/ml and 0.1 mg/ml) increased CAT levels in post-treatment design compared to rotenone group. Calcitriol and probiotics protect against rotenone-induced neurotoxicity in SH-SY5Y cells by decreasing reactive oxygen species (ROS) and increasing antioxidant enzyme parameters. These neuroprotective effects of calcitriol and probiotics against rotenone-induced dopaminergic neurotoxicity provide an experimental basis for their potential clinical use in the treatment of Parkinson's disease (PD).</p>\",\"PeriodicalId\":11333,\"journal\":{\"name\":\"Drug and Chemical Toxicology\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug and Chemical Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01480545.2024.2429621\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2024.2429621","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在探讨益生菌和1,25-二羟维生素D3(钙三醇)对鱼藤酮诱导的人神经母细胞瘤细胞株SH-SY5Y神经毒性的保护作用。给SH-SY5Y细胞注射鱼藤酮可诱导其产生神经毒性效应。在治疗前和治疗后分别给予不同浓度的骨化三醇和益生菌。噻唑蓝四氮唑溴化物(MTT)测定法用于测量细胞活力。细胞内抗氧化酶(蛋白酪氨酸激酶(PTK)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH)、谷胱甘肽还原酶(GSR)和过氧化氢酶(CAT))的蛋白水平由酶联免疫吸附试验(ELISA)测定。罗替酮(150 nM)可降低(p p
The neuroprotective effect of 1,25-dyhydroxyvitamin D3 (calcitriol) and probiotics on the rotenone-induced neurotoxicity model in SH-SY5Y cells.
This study aimed to investigate the neuroprotective role of probiotics and 1,25-dyhydroxyvitamin D3 (calcitriol) against neurotoxicity on rotenone-induced human neuroblastoma cell line SH-SY5Y. Rotenone was administered to induce neurotoxic effects in SH-SY5Y cells. Calcitriol and probiotics were administered at different concentrations as pre- and post-treatment. The thiazolyl blue tetrazolium bromide (MTT) assay was performed to measure cell viability. Intracellular protein levels of antioxidant enzymes (protein tyrosine kinase (PTK), superoxide dismutase (SOD), glutathione peroxidase (GSH), glutathione reductase (GSR), and catalase (CAT)) were determined by the enzyme-linked immunosorbent assay (ELISA). Rotenone (150 nM) reduced (p < 0.001) cell viability compared to control cells. Single and combined pretreatments with probiotics (0.01 mg/ml, 0.05 mg/ml, and 0.1 mg/ml) and calcitriol (1.25 µM, 2.5 µM, and 5 µM) increased (p < 0.05) cell viability compared to rotenone group. In the pre- and post-treatment design, all treatment groups increased the SOD and GSH levels and decreased the GSR levels compared to rotenone. None of the pretreatments reversed the PTK levels (except probiotics: 0.01 mg/ml). Calcitriol (2.5 µM) increased the CAT levels in pretreatment design, and probiotics (0.05 mg/ml and 0.1 mg/ml) increased CAT levels in post-treatment design compared to rotenone group. Calcitriol and probiotics protect against rotenone-induced neurotoxicity in SH-SY5Y cells by decreasing reactive oxygen species (ROS) and increasing antioxidant enzyme parameters. These neuroprotective effects of calcitriol and probiotics against rotenone-induced dopaminergic neurotoxicity provide an experimental basis for their potential clinical use in the treatment of Parkinson's disease (PD).
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.