西尼格林对二乙基亚硝胺诱导的小鼠肝癌的潜在治疗效果:探索 Nrf-2/HO-1、PI3K-Akt-mTOR 信号通路和细胞凋亡的参与作用

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2024-11-04 eCollection Date: 2024-11-19 DOI:10.1021/acsomega.4c06203
Zhe Bai, Hui Li, Baoping Jiao
{"title":"西尼格林对二乙基亚硝胺诱导的小鼠肝癌的潜在治疗效果:探索 Nrf-2/HO-1、PI3K-Akt-mTOR 信号通路和细胞凋亡的参与作用","authors":"Zhe Bai, Hui Li, Baoping Jiao","doi":"10.1021/acsomega.4c06203","DOIUrl":null,"url":null,"abstract":"<p><p>Sinigrin is a glucosinolate present in plants of the family Brassicaceae and has been considered for its anticancer potential. This study examines the efficacy of sinigrin on the liver cancer caused by diethylnitrosamine (DEN) in mice through the analysis of its impact on the Nrf-2/HO-1, PI3K-Akt-mTOR, and apoptotic pathways. Development of liver cancer was induced by intraperitoneal injection at the age of 14 days with DEN (25 mg/kg) in mice. Thereafter, sinigrin was orally administered at doses of 10 and 20 mg/kg body weight per day the last 28 days. At the end of 10 weeks, mice were sacrificed and then we conducted hepatic biochemical and molecular assessments. Sinigrin reduced the serum level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), alpha-fetoprotein (AFP), and bilirubin but increased total protein, and albumin, levels. Sinigrin increased the antioxidant enzymes (SOD, CAT, GPx, and GST) as indicated by reduced 8-OHdG, TBARS and increased glutathione. Sinigrin reduced the levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, and NF-κB p65) and PI3K/AKT/mTOR signaling pathway. Sinigrin also activated the intrinsic mitochondrial apoptosis pathway mediated by p53, downregulated antiapoptotic proteins (Bcl-2), up-regulated pro-apoptosis regulatory proteins like Bax and caspase-3. All these results indicate that the protective effects of sinigrin against liver cancer are likely to be applied as an effective therapeutic agent through its antioxidant and pro-apoptotic activities.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 46","pages":"46064-46073"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579720/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential Therapeutic Effect of Sinigrin on Diethylnitrosamine-Induced Liver Cancer in Mice: Exploring the Involvement of Nrf-2/HO-1, PI3K-Akt-mTOR Signaling Pathways, and Apoptosis.\",\"authors\":\"Zhe Bai, Hui Li, Baoping Jiao\",\"doi\":\"10.1021/acsomega.4c06203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sinigrin is a glucosinolate present in plants of the family Brassicaceae and has been considered for its anticancer potential. This study examines the efficacy of sinigrin on the liver cancer caused by diethylnitrosamine (DEN) in mice through the analysis of its impact on the Nrf-2/HO-1, PI3K-Akt-mTOR, and apoptotic pathways. Development of liver cancer was induced by intraperitoneal injection at the age of 14 days with DEN (25 mg/kg) in mice. Thereafter, sinigrin was orally administered at doses of 10 and 20 mg/kg body weight per day the last 28 days. At the end of 10 weeks, mice were sacrificed and then we conducted hepatic biochemical and molecular assessments. Sinigrin reduced the serum level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), alpha-fetoprotein (AFP), and bilirubin but increased total protein, and albumin, levels. Sinigrin increased the antioxidant enzymes (SOD, CAT, GPx, and GST) as indicated by reduced 8-OHdG, TBARS and increased glutathione. Sinigrin reduced the levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, and NF-κB p65) and PI3K/AKT/mTOR signaling pathway. Sinigrin also activated the intrinsic mitochondrial apoptosis pathway mediated by p53, downregulated antiapoptotic proteins (Bcl-2), up-regulated pro-apoptosis regulatory proteins like Bax and caspase-3. All these results indicate that the protective effects of sinigrin against liver cancer are likely to be applied as an effective therapeutic agent through its antioxidant and pro-apoptotic activities.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 46\",\"pages\":\"46064-46073\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579720/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c06203\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/19 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c06203","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

枸橘苷是一种存在于十字花科植物中的葡萄糖苷酸,其抗癌潜力已被考虑在内。本研究通过分析枸橘苷对 Nrf-2/HO-1、PI3K-Akt-mTOR 和细胞凋亡通路的影响,探讨了枸橘苷对二乙基亚硝胺(DEN)导致的小鼠肝癌的疗效。在小鼠14天大时腹腔注射DEN(25毫克/千克)诱发肝癌。此后,以每天每公斤体重 10 毫克和 20 毫克的剂量口服 sinigrin,持续 28 天。10 周后,小鼠被处死,然后进行肝脏生化和分子评估。西尼格林降低了血清中丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、γ-谷氨酰转移酶(GGT)、碱性磷酸酶(ALP)、乳酸脱氢酶(LDH)、甲胎蛋白(AFP)和胆红素的水平,但增加了总蛋白和白蛋白的水平。西尼格林增加了抗氧化酶(SOD、CAT、GPx 和 GST),表现为 8-OHdG、TBARS 减少,谷胱甘肽增加。Sinigrin 降低了炎症细胞因子(IL-6、IL-1β、TNF-α 和 NF-κB p65)和 PI3K/AKT/mTOR 信号通路的水平。Sinigrin 还激活了由 p53 介导的线粒体内在凋亡途径,下调了抗凋亡蛋白(Bcl-2),上调了促凋亡调节蛋白,如 Bax 和 caspase-3。所有这些结果表明,通过其抗氧化和促进细胞凋亡的活性,枸橘苷对肝癌的保护作用很可能被用作一种有效的治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential Therapeutic Effect of Sinigrin on Diethylnitrosamine-Induced Liver Cancer in Mice: Exploring the Involvement of Nrf-2/HO-1, PI3K-Akt-mTOR Signaling Pathways, and Apoptosis.

Sinigrin is a glucosinolate present in plants of the family Brassicaceae and has been considered for its anticancer potential. This study examines the efficacy of sinigrin on the liver cancer caused by diethylnitrosamine (DEN) in mice through the analysis of its impact on the Nrf-2/HO-1, PI3K-Akt-mTOR, and apoptotic pathways. Development of liver cancer was induced by intraperitoneal injection at the age of 14 days with DEN (25 mg/kg) in mice. Thereafter, sinigrin was orally administered at doses of 10 and 20 mg/kg body weight per day the last 28 days. At the end of 10 weeks, mice were sacrificed and then we conducted hepatic biochemical and molecular assessments. Sinigrin reduced the serum level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), alpha-fetoprotein (AFP), and bilirubin but increased total protein, and albumin, levels. Sinigrin increased the antioxidant enzymes (SOD, CAT, GPx, and GST) as indicated by reduced 8-OHdG, TBARS and increased glutathione. Sinigrin reduced the levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, and NF-κB p65) and PI3K/AKT/mTOR signaling pathway. Sinigrin also activated the intrinsic mitochondrial apoptosis pathway mediated by p53, downregulated antiapoptotic proteins (Bcl-2), up-regulated pro-apoptosis regulatory proteins like Bax and caspase-3. All these results indicate that the protective effects of sinigrin against liver cancer are likely to be applied as an effective therapeutic agent through its antioxidant and pro-apoptotic activities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信