Ana B. Caliari, Renata N. Bicev, Caroline C. da Silva, Sinval E. G. de Souza, Marta G. da Silva, Louise E. A. Souza, Lucas R. de Mello, Ian W. Hamley, Guacyara Motta, Jéril Degrouard, Guillaume Tresset, Alexandre J. C. Quaresma, Clovis R. Nakaie and Emerson R. da Silva
{"title":"去氨加压素的自组装、细胞相容性以及与聚苯乙烯磺酸钠的相互作用。","authors":"Ana B. Caliari, Renata N. Bicev, Caroline C. da Silva, Sinval E. G. de Souza, Marta G. da Silva, Louise E. A. Souza, Lucas R. de Mello, Ian W. Hamley, Guacyara Motta, Jéril Degrouard, Guillaume Tresset, Alexandre J. C. Quaresma, Clovis R. Nakaie and Emerson R. da Silva","doi":"10.1039/D4SM01125B","DOIUrl":null,"url":null,"abstract":"<p >Peptide–polymer systems hold strong potential for applications in nanotherapeutics. Desmopressin, a synthetic analogue of the antidiuretic hormone arginine vasopressin, may serve as a valuable case of study in this context since it is a first-line treatment for disorders affecting water homeostasis, including diabetes insipidus. It also has an established use as a hemostatic agent in von Willebrand disease, and recently, its repurposing has been suggested as a neoadjuvant in the treatment of certain types of cancer. Despite its well-documented clinical uses, studies on the supramolecular organization of desmopressin and its association with polymers remain scarce, limiting the therapeutic benefits of these nanostructured arrays. Here, we investigate the self-assembly of desmopressin and its association with sodium polystyrene sulphonate (NaPSS), a potassium-binding polymer used to treat hyperkalemia. Using structural techniques such as small-angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM), and atomic force microscopy combined with infrared nanospectroscopy (AFM-IR), we identified that desmopressin associates with NaPSS to form hybrid fibrillar nanoassemblies characterized by β-turn enriched domains and the appearance of β-sheet content. <em>In vitro</em> cytotoxicity assays conducted on breast cancer cell lines MCF-7 and MDA-MB-231 showed that NaPSS/desmopressin complexes are well-tolerated by the non-metastatic MCF-7 cells while displaying inhibitory effects against the metastatic MDA-MB-231 cells. The findings presented here, which demonstrate the successful association between two clinically validated drugs and the ability of the hybrid matrix to modulate cell interactions, potentially contribute to the design of peptide–polymer therapeutic systems.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 48","pages":" 9597-9613"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-assembly, cytocompatibility, and interactions of desmopressin with sodium polystyrene sulfonate†\",\"authors\":\"Ana B. Caliari, Renata N. Bicev, Caroline C. da Silva, Sinval E. G. de Souza, Marta G. da Silva, Louise E. A. Souza, Lucas R. de Mello, Ian W. Hamley, Guacyara Motta, Jéril Degrouard, Guillaume Tresset, Alexandre J. C. Quaresma, Clovis R. Nakaie and Emerson R. da Silva\",\"doi\":\"10.1039/D4SM01125B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Peptide–polymer systems hold strong potential for applications in nanotherapeutics. Desmopressin, a synthetic analogue of the antidiuretic hormone arginine vasopressin, may serve as a valuable case of study in this context since it is a first-line treatment for disorders affecting water homeostasis, including diabetes insipidus. It also has an established use as a hemostatic agent in von Willebrand disease, and recently, its repurposing has been suggested as a neoadjuvant in the treatment of certain types of cancer. Despite its well-documented clinical uses, studies on the supramolecular organization of desmopressin and its association with polymers remain scarce, limiting the therapeutic benefits of these nanostructured arrays. Here, we investigate the self-assembly of desmopressin and its association with sodium polystyrene sulphonate (NaPSS), a potassium-binding polymer used to treat hyperkalemia. Using structural techniques such as small-angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM), and atomic force microscopy combined with infrared nanospectroscopy (AFM-IR), we identified that desmopressin associates with NaPSS to form hybrid fibrillar nanoassemblies characterized by β-turn enriched domains and the appearance of β-sheet content. <em>In vitro</em> cytotoxicity assays conducted on breast cancer cell lines MCF-7 and MDA-MB-231 showed that NaPSS/desmopressin complexes are well-tolerated by the non-metastatic MCF-7 cells while displaying inhibitory effects against the metastatic MDA-MB-231 cells. The findings presented here, which demonstrate the successful association between two clinically validated drugs and the ability of the hybrid matrix to modulate cell interactions, potentially contribute to the design of peptide–polymer therapeutic systems.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":\" 48\",\"pages\":\" 9597-9613\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm01125b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm01125b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Self-assembly, cytocompatibility, and interactions of desmopressin with sodium polystyrene sulfonate†
Peptide–polymer systems hold strong potential for applications in nanotherapeutics. Desmopressin, a synthetic analogue of the antidiuretic hormone arginine vasopressin, may serve as a valuable case of study in this context since it is a first-line treatment for disorders affecting water homeostasis, including diabetes insipidus. It also has an established use as a hemostatic agent in von Willebrand disease, and recently, its repurposing has been suggested as a neoadjuvant in the treatment of certain types of cancer. Despite its well-documented clinical uses, studies on the supramolecular organization of desmopressin and its association with polymers remain scarce, limiting the therapeutic benefits of these nanostructured arrays. Here, we investigate the self-assembly of desmopressin and its association with sodium polystyrene sulphonate (NaPSS), a potassium-binding polymer used to treat hyperkalemia. Using structural techniques such as small-angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM), and atomic force microscopy combined with infrared nanospectroscopy (AFM-IR), we identified that desmopressin associates with NaPSS to form hybrid fibrillar nanoassemblies characterized by β-turn enriched domains and the appearance of β-sheet content. In vitro cytotoxicity assays conducted on breast cancer cell lines MCF-7 and MDA-MB-231 showed that NaPSS/desmopressin complexes are well-tolerated by the non-metastatic MCF-7 cells while displaying inhibitory effects against the metastatic MDA-MB-231 cells. The findings presented here, which demonstrate the successful association between two clinically validated drugs and the ability of the hybrid matrix to modulate cell interactions, potentially contribute to the design of peptide–polymer therapeutic systems.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.