用于全固态钠电池的硫化物电解质:基本原理和改性策略。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shoumeng Yang, Yi Tang, Yu Yao, Shengnan He, Zhijun Wu, Yang Yang, Hongge Pan, Xianhong Rui, Yan Yu
{"title":"用于全固态钠电池的硫化物电解质:基本原理和改性策略。","authors":"Shoumeng Yang, Yi Tang, Yu Yao, Shengnan He, Zhijun Wu, Yang Yang, Hongge Pan, Xianhong Rui, Yan Yu","doi":"10.1039/d4mh01218f","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfide solid-state electrolytes (SSSEs) have garnered overwhelming attention as promising candidates for high-energy-density all-solid-state sodium batteries (ASSSBs) due to their high room-temperature ionic conductivity and excellent mechanical properties. However, the poor chemical/electrochemical stability, narrow electrochemical windows, and limited adaptability to cathodes/anodes of SSSEs hinder the performance and application of SSSEs in ASSSBs. Consequently, a comprehensive understanding of the preparation methods, fundamental properties, modification techniques, and compatibility strategies between SSSEs and electrodes is crucial for the advancement of SSSE-based ASSSBs. This review summarizes the SSSEs based on their compositional makeup and crystal structure, aiming to elucidate the Na<sup>+</sup> conduction mechanisms. It also provides an overview of modification strategies designed to enhance ionic conductivity, chemical/electrochemical stability, and interfacial compatibility with electrodes. Furthermore, we outline the challenges and strategies related to the interfaces of SSSEs with cathodes/anodes. Finally, we discuss the existing challenges facing SSSEs and propose the future research directions for SSSE-based ASSSBs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfide electrolytes for all-solid-state sodium batteries: fundamentals and modification strategies.\",\"authors\":\"Shoumeng Yang, Yi Tang, Yu Yao, Shengnan He, Zhijun Wu, Yang Yang, Hongge Pan, Xianhong Rui, Yan Yu\",\"doi\":\"10.1039/d4mh01218f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sulfide solid-state electrolytes (SSSEs) have garnered overwhelming attention as promising candidates for high-energy-density all-solid-state sodium batteries (ASSSBs) due to their high room-temperature ionic conductivity and excellent mechanical properties. However, the poor chemical/electrochemical stability, narrow electrochemical windows, and limited adaptability to cathodes/anodes of SSSEs hinder the performance and application of SSSEs in ASSSBs. Consequently, a comprehensive understanding of the preparation methods, fundamental properties, modification techniques, and compatibility strategies between SSSEs and electrodes is crucial for the advancement of SSSE-based ASSSBs. This review summarizes the SSSEs based on their compositional makeup and crystal structure, aiming to elucidate the Na<sup>+</sup> conduction mechanisms. It also provides an overview of modification strategies designed to enhance ionic conductivity, chemical/electrochemical stability, and interfacial compatibility with electrodes. Furthermore, we outline the challenges and strategies related to the interfaces of SSSEs with cathodes/anodes. Finally, we discuss the existing challenges facing SSSEs and propose the future research directions for SSSE-based ASSSBs.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01218f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01218f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硫化物固态电解质(SSSEs)具有高室温离子电导率和优异的机械性能,是高能量密度全固态钠电池(ASSSBs)的理想候选材料,因此受到广泛关注。然而,SSSE 化学/电化学稳定性差、电化学窗口狭窄以及对阴极/阳极的适应性有限,这些都阻碍了 SSSE 在全固态钠电池中的性能和应用。因此,全面了解 SSSE 的制备方法、基本特性、改性技术以及 SSSE 与电极之间的兼容策略对于促进基于 SSSE 的 ASSSB 的发展至关重要。本综述根据 SSSE 的组成成分和晶体结构对其进行了总结,旨在阐明 Na+ 的传导机制。综述还概述了旨在增强离子传导性、化学/电化学稳定性以及与电极的界面兼容性的改性策略。此外,我们还概述了与 SSSE 与阴极/阳极界面相关的挑战和策略。最后,我们讨论了 SSSE 目前面临的挑战,并提出了基于 SSSE 的 ASSSB 的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sulfide electrolytes for all-solid-state sodium batteries: fundamentals and modification strategies.

Sulfide solid-state electrolytes (SSSEs) have garnered overwhelming attention as promising candidates for high-energy-density all-solid-state sodium batteries (ASSSBs) due to their high room-temperature ionic conductivity and excellent mechanical properties. However, the poor chemical/electrochemical stability, narrow electrochemical windows, and limited adaptability to cathodes/anodes of SSSEs hinder the performance and application of SSSEs in ASSSBs. Consequently, a comprehensive understanding of the preparation methods, fundamental properties, modification techniques, and compatibility strategies between SSSEs and electrodes is crucial for the advancement of SSSE-based ASSSBs. This review summarizes the SSSEs based on their compositional makeup and crystal structure, aiming to elucidate the Na+ conduction mechanisms. It also provides an overview of modification strategies designed to enhance ionic conductivity, chemical/electrochemical stability, and interfacial compatibility with electrodes. Furthermore, we outline the challenges and strategies related to the interfaces of SSSEs with cathodes/anodes. Finally, we discuss the existing challenges facing SSSEs and propose the future research directions for SSSE-based ASSSBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信