Vicent Marwa, Thomas Kivevele, Baraka Kichonge, Juma Selemani
{"title":"用于疫苗储存的便携式太阳能冷却器的设计和性能分析","authors":"Vicent Marwa, Thomas Kivevele, Baraka Kichonge, Juma Selemani","doi":"10.1002/ese3.1915","DOIUrl":null,"url":null,"abstract":"<p>The efficacy of vaccine storage is significantly impacted by temperature fluctuations within the cooler, often exacerbated by using phase change materials in existing cooler designs for remote areas. These materials can undergo uneven melting and phase separation, leading to temperature instability and vaccine potency loss. In response to this challenge, the present study introduces a novel design of a portable, locally-made solar-powered cooler optimized for longer storage periods. The cooler's performance in terms of temperature distribution, airflow dynamics, and the coefficient of performance (COP) is meticulously examined through computational fluid dynamics (CFD) simulations. The simulated results were validated using experimental data from the open literature, ensuring accuracy and reliability. The findings indicate that the developed cooler achieves significant improvements over traditional models. For instance, the current model reaches a temperature of +12°C in just 84 min, compared to 208 min, as reported in the literature results. Moreover, the current model reaches a temperature of −12°C in 195 min and it has energy efficient with a COP of 4.5. Statistical analysis further confirms the reliability of the simulation results, with root mean square and mean absolute percentage errors of 6.587 and 24.2%, respectively. Additionally, a comparative study of five insulative materials highlights polyurethane (Po) as the top performer, with a heat transfer performance of 14.3%, followed by feather fiber (Fe) (18.7%), fly ash (Fl) (19.8%), fiberglass (Fi) (21.9%), and coconut fiber (Co) (25.9%). Notably, net present value (NPV) of $689.336 and $448.01 was obtained for economic analysis of the current model over the existing model, showing the feasibility of the study. Hence, the cooler's effectiveness in storing vaccines in isolated regions exceeds that of conventional models, providing a hopeful solution to tackle vital challenges in vaccine distribution and preservation.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"12 11","pages":"4965-4990"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1915","citationCount":"0","resultStr":"{\"title\":\"Design and performance analysis of portable solar powered cooler for vaccine storage\",\"authors\":\"Vicent Marwa, Thomas Kivevele, Baraka Kichonge, Juma Selemani\",\"doi\":\"10.1002/ese3.1915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The efficacy of vaccine storage is significantly impacted by temperature fluctuations within the cooler, often exacerbated by using phase change materials in existing cooler designs for remote areas. These materials can undergo uneven melting and phase separation, leading to temperature instability and vaccine potency loss. In response to this challenge, the present study introduces a novel design of a portable, locally-made solar-powered cooler optimized for longer storage periods. The cooler's performance in terms of temperature distribution, airflow dynamics, and the coefficient of performance (COP) is meticulously examined through computational fluid dynamics (CFD) simulations. The simulated results were validated using experimental data from the open literature, ensuring accuracy and reliability. The findings indicate that the developed cooler achieves significant improvements over traditional models. For instance, the current model reaches a temperature of +12°C in just 84 min, compared to 208 min, as reported in the literature results. Moreover, the current model reaches a temperature of −12°C in 195 min and it has energy efficient with a COP of 4.5. Statistical analysis further confirms the reliability of the simulation results, with root mean square and mean absolute percentage errors of 6.587 and 24.2%, respectively. Additionally, a comparative study of five insulative materials highlights polyurethane (Po) as the top performer, with a heat transfer performance of 14.3%, followed by feather fiber (Fe) (18.7%), fly ash (Fl) (19.8%), fiberglass (Fi) (21.9%), and coconut fiber (Co) (25.9%). Notably, net present value (NPV) of $689.336 and $448.01 was obtained for economic analysis of the current model over the existing model, showing the feasibility of the study. Hence, the cooler's effectiveness in storing vaccines in isolated regions exceeds that of conventional models, providing a hopeful solution to tackle vital challenges in vaccine distribution and preservation.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"12 11\",\"pages\":\"4965-4990\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1915\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1915\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1915","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Design and performance analysis of portable solar powered cooler for vaccine storage
The efficacy of vaccine storage is significantly impacted by temperature fluctuations within the cooler, often exacerbated by using phase change materials in existing cooler designs for remote areas. These materials can undergo uneven melting and phase separation, leading to temperature instability and vaccine potency loss. In response to this challenge, the present study introduces a novel design of a portable, locally-made solar-powered cooler optimized for longer storage periods. The cooler's performance in terms of temperature distribution, airflow dynamics, and the coefficient of performance (COP) is meticulously examined through computational fluid dynamics (CFD) simulations. The simulated results were validated using experimental data from the open literature, ensuring accuracy and reliability. The findings indicate that the developed cooler achieves significant improvements over traditional models. For instance, the current model reaches a temperature of +12°C in just 84 min, compared to 208 min, as reported in the literature results. Moreover, the current model reaches a temperature of −12°C in 195 min and it has energy efficient with a COP of 4.5. Statistical analysis further confirms the reliability of the simulation results, with root mean square and mean absolute percentage errors of 6.587 and 24.2%, respectively. Additionally, a comparative study of five insulative materials highlights polyurethane (Po) as the top performer, with a heat transfer performance of 14.3%, followed by feather fiber (Fe) (18.7%), fly ash (Fl) (19.8%), fiberglass (Fi) (21.9%), and coconut fiber (Co) (25.9%). Notably, net present value (NPV) of $689.336 and $448.01 was obtained for economic analysis of the current model over the existing model, showing the feasibility of the study. Hence, the cooler's effectiveness in storing vaccines in isolated regions exceeds that of conventional models, providing a hopeful solution to tackle vital challenges in vaccine distribution and preservation.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.