Joshua H. Schmidt, Heather A. Coletti, Kyle A. Cutting, Tammy L. Wilson, Buck A. Mangipane, Carlene N. Schultz, Dylan T. Schertz
{"title":"海洋资源的时空变化对陆生鸟类捕食者占据动态的影响","authors":"Joshua H. Schmidt, Heather A. Coletti, Kyle A. Cutting, Tammy L. Wilson, Buck A. Mangipane, Carlene N. Schultz, Dylan T. Schertz","doi":"10.1002/ecs2.70078","DOIUrl":null,"url":null,"abstract":"<p>Identifying how species respond to system drivers such as weather, climate, habitat, and resource availability is critical for understanding population change. In coastal areas, the transfer of nutrients across the marine and terrestrial interface increases complexity. Nesting populations of bald eagles (<i>Haliaeetus leucocephalus</i>) along the Pacific coast of North America, although terrestrial, are largely dependent on marine resources during the breeding season and therefore represent a good focal species for understanding the linkages of nutrients between terrestrial and marine systems. Due to their location, coastal eagle populations are susceptible to a variety of climate-induced perturbations, from both land and sea. The northeast Pacific Marine Heatwave (PMH) of 2014–2016 had wide-ranging impacts on the marine ecosystem and provided an opportunity to explore how marine conditions can impact terrestrial wildlife populations. We used a spatially explicit multistate occupancy modeling framework to analyze >30 years of bald eagle nest occupancy data collected in four large national parks along a coastal interior gradient in Alaska, USA. We assessed occupancy state in relation to weather conditions, salmon abundance, access to alternate prey resources, and the PMH event to help elucidate the factors affecting bald eagle occupancy dynamics over time. We found that occupancy probability was higher in areas where prey resources were concentrated (e.g., near seabird colonies, where bears facilitate access to salmon carcasses). We also found that the probability of reproductive success was higher during warmer, drier springs with higher-than-average salmon abundance. After the onset of the PMH, success declined in the areas most dependent on non-salmon marine resources. These findings confirm the importance of spring weather conditions and access to salmon resources during the critical chick-rearing period, but also reveal that marine heatwaves may have important secondary effects through a reduction in the overall quantity or quality of prey available to bald eagles. Given ongoing warming at high latitudes and the expectation that marine heatwaves will become more common, our findings are useful for understanding ongoing and future changes in the transfer of nutrients from marine to terrestrial ecosystems and how such changes may impact terrestrial species such as bald eagles.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"15 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70078","citationCount":"0","resultStr":"{\"title\":\"The effects of spatiotemporal variation in marine resources on the occupancy dynamics of a terrestrial avian predator\",\"authors\":\"Joshua H. Schmidt, Heather A. Coletti, Kyle A. Cutting, Tammy L. Wilson, Buck A. Mangipane, Carlene N. Schultz, Dylan T. Schertz\",\"doi\":\"10.1002/ecs2.70078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identifying how species respond to system drivers such as weather, climate, habitat, and resource availability is critical for understanding population change. In coastal areas, the transfer of nutrients across the marine and terrestrial interface increases complexity. Nesting populations of bald eagles (<i>Haliaeetus leucocephalus</i>) along the Pacific coast of North America, although terrestrial, are largely dependent on marine resources during the breeding season and therefore represent a good focal species for understanding the linkages of nutrients between terrestrial and marine systems. Due to their location, coastal eagle populations are susceptible to a variety of climate-induced perturbations, from both land and sea. The northeast Pacific Marine Heatwave (PMH) of 2014–2016 had wide-ranging impacts on the marine ecosystem and provided an opportunity to explore how marine conditions can impact terrestrial wildlife populations. We used a spatially explicit multistate occupancy modeling framework to analyze >30 years of bald eagle nest occupancy data collected in four large national parks along a coastal interior gradient in Alaska, USA. We assessed occupancy state in relation to weather conditions, salmon abundance, access to alternate prey resources, and the PMH event to help elucidate the factors affecting bald eagle occupancy dynamics over time. We found that occupancy probability was higher in areas where prey resources were concentrated (e.g., near seabird colonies, where bears facilitate access to salmon carcasses). We also found that the probability of reproductive success was higher during warmer, drier springs with higher-than-average salmon abundance. After the onset of the PMH, success declined in the areas most dependent on non-salmon marine resources. These findings confirm the importance of spring weather conditions and access to salmon resources during the critical chick-rearing period, but also reveal that marine heatwaves may have important secondary effects through a reduction in the overall quantity or quality of prey available to bald eagles. Given ongoing warming at high latitudes and the expectation that marine heatwaves will become more common, our findings are useful for understanding ongoing and future changes in the transfer of nutrients from marine to terrestrial ecosystems and how such changes may impact terrestrial species such as bald eagles.</p>\",\"PeriodicalId\":48930,\"journal\":{\"name\":\"Ecosphere\",\"volume\":\"15 11\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70078\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70078\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70078","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
The effects of spatiotemporal variation in marine resources on the occupancy dynamics of a terrestrial avian predator
Identifying how species respond to system drivers such as weather, climate, habitat, and resource availability is critical for understanding population change. In coastal areas, the transfer of nutrients across the marine and terrestrial interface increases complexity. Nesting populations of bald eagles (Haliaeetus leucocephalus) along the Pacific coast of North America, although terrestrial, are largely dependent on marine resources during the breeding season and therefore represent a good focal species for understanding the linkages of nutrients between terrestrial and marine systems. Due to their location, coastal eagle populations are susceptible to a variety of climate-induced perturbations, from both land and sea. The northeast Pacific Marine Heatwave (PMH) of 2014–2016 had wide-ranging impacts on the marine ecosystem and provided an opportunity to explore how marine conditions can impact terrestrial wildlife populations. We used a spatially explicit multistate occupancy modeling framework to analyze >30 years of bald eagle nest occupancy data collected in four large national parks along a coastal interior gradient in Alaska, USA. We assessed occupancy state in relation to weather conditions, salmon abundance, access to alternate prey resources, and the PMH event to help elucidate the factors affecting bald eagle occupancy dynamics over time. We found that occupancy probability was higher in areas where prey resources were concentrated (e.g., near seabird colonies, where bears facilitate access to salmon carcasses). We also found that the probability of reproductive success was higher during warmer, drier springs with higher-than-average salmon abundance. After the onset of the PMH, success declined in the areas most dependent on non-salmon marine resources. These findings confirm the importance of spring weather conditions and access to salmon resources during the critical chick-rearing period, but also reveal that marine heatwaves may have important secondary effects through a reduction in the overall quantity or quality of prey available to bald eagles. Given ongoing warming at high latitudes and the expectation that marine heatwaves will become more common, our findings are useful for understanding ongoing and future changes in the transfer of nutrients from marine to terrestrial ecosystems and how such changes may impact terrestrial species such as bald eagles.
期刊介绍:
The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.