{"title":"具有斥力机制的人工电场算法","authors":"Gengfei Zhang, Jiatang Cheng","doi":"10.1111/exsy.13715","DOIUrl":null,"url":null,"abstract":"<p>Due to its outstanding performance in addressing optimization problems, artificial electric field (AEF) algorithm has garnered increasing notice in recent years. Nevertheless, numerous studies indicate that AEF is susceptible to premature convergence when the region influenced by the global optimum constitutes a small fraction of the entire solution space. By conducting micro-level research on the particles during the evolution process of AEF, it is revealed that the primary factors influencing optimization performance are the Coulomb's electrostatic force mechanism and the fixed attenuation factor. Inspired by this observation, we propose an improved version named artificial electric field algorithm with repulsion mechanism (RMAEF). Specifically, in RMAEF, a repulsion mechanism is incorporated to make particles escape from local optima. Furthermore, an adaptive attenuation factor is employed to update dynamically Coulomb's constant. RMAEF is compared with AEF and its state-of-art variants under 44 test functions from CEC 2005 and CEC 2014 test suites. From the experiment results, it is obvious that among 14 benchmark functions from CEC 2005 on 30D and 50D optimization, the RMAEF algorithm exhibits superior performance on 8 and 9 functions compared with advanced variants of AEF. For CEC 2014 on 30D and 50D optimization, the RMAEF algorithm produces the best results on 11 and 12 functions, respectively. In addition, three real-world problems are also used to verify the versatility and robustness. The results demonstrate that RMAEF outperforms its competitors in terms of overall performance.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"41 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial electric field algorithm with repulsion mechanism\",\"authors\":\"Gengfei Zhang, Jiatang Cheng\",\"doi\":\"10.1111/exsy.13715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to its outstanding performance in addressing optimization problems, artificial electric field (AEF) algorithm has garnered increasing notice in recent years. Nevertheless, numerous studies indicate that AEF is susceptible to premature convergence when the region influenced by the global optimum constitutes a small fraction of the entire solution space. By conducting micro-level research on the particles during the evolution process of AEF, it is revealed that the primary factors influencing optimization performance are the Coulomb's electrostatic force mechanism and the fixed attenuation factor. Inspired by this observation, we propose an improved version named artificial electric field algorithm with repulsion mechanism (RMAEF). Specifically, in RMAEF, a repulsion mechanism is incorporated to make particles escape from local optima. Furthermore, an adaptive attenuation factor is employed to update dynamically Coulomb's constant. RMAEF is compared with AEF and its state-of-art variants under 44 test functions from CEC 2005 and CEC 2014 test suites. From the experiment results, it is obvious that among 14 benchmark functions from CEC 2005 on 30D and 50D optimization, the RMAEF algorithm exhibits superior performance on 8 and 9 functions compared with advanced variants of AEF. For CEC 2014 on 30D and 50D optimization, the RMAEF algorithm produces the best results on 11 and 12 functions, respectively. In addition, three real-world problems are also used to verify the versatility and robustness. The results demonstrate that RMAEF outperforms its competitors in terms of overall performance.</p>\",\"PeriodicalId\":51053,\"journal\":{\"name\":\"Expert Systems\",\"volume\":\"41 12\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13715\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13715","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Artificial electric field algorithm with repulsion mechanism
Due to its outstanding performance in addressing optimization problems, artificial electric field (AEF) algorithm has garnered increasing notice in recent years. Nevertheless, numerous studies indicate that AEF is susceptible to premature convergence when the region influenced by the global optimum constitutes a small fraction of the entire solution space. By conducting micro-level research on the particles during the evolution process of AEF, it is revealed that the primary factors influencing optimization performance are the Coulomb's electrostatic force mechanism and the fixed attenuation factor. Inspired by this observation, we propose an improved version named artificial electric field algorithm with repulsion mechanism (RMAEF). Specifically, in RMAEF, a repulsion mechanism is incorporated to make particles escape from local optima. Furthermore, an adaptive attenuation factor is employed to update dynamically Coulomb's constant. RMAEF is compared with AEF and its state-of-art variants under 44 test functions from CEC 2005 and CEC 2014 test suites. From the experiment results, it is obvious that among 14 benchmark functions from CEC 2005 on 30D and 50D optimization, the RMAEF algorithm exhibits superior performance on 8 and 9 functions compared with advanced variants of AEF. For CEC 2014 on 30D and 50D optimization, the RMAEF algorithm produces the best results on 11 and 12 functions, respectively. In addition, three real-world problems are also used to verify the versatility and robustness. The results demonstrate that RMAEF outperforms its competitors in terms of overall performance.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.