Brian G. Kronenthal, Joe Miller, Alex Nash, Jacob Roeder, Hani Samamah, Tony W. H. Wong
{"title":"R R 上的非同构二维代数定义图","authors":"Brian G. Kronenthal, Joe Miller, Alex Nash, Jacob Roeder, Hani Samamah, Tony W. H. Wong","doi":"10.1002/jgt.23161","DOIUrl":null,"url":null,"abstract":"<p>For <span></span><math>\n \n <mrow>\n <mi>f</mi>\n \n <mo>:</mo>\n \n <msup>\n <mi>R</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>→</mo>\n \n <mi>R</mi>\n </mrow></math>, let <span></span><math>\n \n <mrow>\n <msub>\n <mi>Γ</mi>\n \n <mi>R</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>f</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> be a two-dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of <span></span><math>\n \n <mrow>\n <msup>\n <mi>R</mi>\n \n <mn>2</mn>\n </msup>\n </mrow></math> and two vertices <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>a</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>x</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>x</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n </mrow></math> are adjacent if and only if <span></span><math>\n \n <mrow>\n <msub>\n <mi>a</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>x</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>=</mo>\n \n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>x</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>. It is known that <span></span><math>\n \n <mrow>\n <msub>\n <mi>Γ</mi>\n \n <mi>R</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>X</mi>\n \n <mi>Y</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> has girth 6 and can be extended to the point-line incidence graph of the classical real projective plane. However, it was unknown whether there exists <span></span><math>\n \n <mrow>\n <mi>f</mi>\n \n <mo>∈</mo>\n \n <mi>R</mi>\n \n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>X</mi>\n \n <mo>,</mo>\n \n <mi>Y</mi>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <msub>\n <mi>Γ</mi>\n \n <mi>R</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>f</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> has girth 6 and is nonisomorphic to <span></span><math>\n \n <mrow>\n <msub>\n <mi>Γ</mi>\n \n <mi>R</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>X</mi>\n \n <mi>Y</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>. This paper answers this question affirmatively and thus provides a construction of a nonclassical real projective plane. This paper also studies the diameter and girth of <span></span><math>\n \n <mrow>\n <msub>\n <mi>Γ</mi>\n \n <mi>R</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>f</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> for families of bivariate functions <span></span><math>\n \n <mrow>\n <mi>f</mi>\n </mrow></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"50-64"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonisomorphic two-dimensional algebraically defined graphs over \\n \\n \\n \\n R\\n \\n \\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23161:jgt23161-math-0001\\\" wiley:location=\\\"equation/jgt23161-math-0001.png\\\"><mrow><mrow><mi mathvariant=\\\"double-struck\\\">R</mi></mrow></mrow></math>\",\"authors\":\"Brian G. Kronenthal, Joe Miller, Alex Nash, Jacob Roeder, Hani Samamah, Tony W. H. Wong\",\"doi\":\"10.1002/jgt.23161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <span></span><math>\\n \\n <mrow>\\n <mi>f</mi>\\n \\n <mo>:</mo>\\n \\n <msup>\\n <mi>R</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>→</mo>\\n \\n <mi>R</mi>\\n </mrow></math>, let <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n \\n <mi>R</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>f</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> be a two-dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of <span></span><math>\\n \\n <mrow>\\n <msup>\\n <mi>R</mi>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow></math> and two vertices <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>a</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>[</mo>\\n \\n <mrow>\\n <mi>x</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>x</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mo>]</mo>\\n </mrow>\\n </mrow></math> are adjacent if and only if <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>a</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>x</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>=</mo>\\n \\n <mi>f</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mo>,</mo>\\n \\n <mi>x</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>. It is known that <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n \\n <mi>R</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>X</mi>\\n \\n <mi>Y</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> has girth 6 and can be extended to the point-line incidence graph of the classical real projective plane. However, it was unknown whether there exists <span></span><math>\\n \\n <mrow>\\n <mi>f</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>R</mi>\\n \\n <mrow>\\n <mo>[</mo>\\n \\n <mrow>\\n <mi>X</mi>\\n \\n <mo>,</mo>\\n \\n <mi>Y</mi>\\n </mrow>\\n \\n <mo>]</mo>\\n </mrow>\\n </mrow></math> such that <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n \\n <mi>R</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>f</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> has girth 6 and is nonisomorphic to <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n \\n <mi>R</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>X</mi>\\n \\n <mi>Y</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>. This paper answers this question affirmatively and thus provides a construction of a nonclassical real projective plane. This paper also studies the diameter and girth of <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n \\n <mi>R</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>f</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> for families of bivariate functions <span></span><math>\\n \\n <mrow>\\n <mi>f</mi>\\n </mrow></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 1\",\"pages\":\"50-64\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23161\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23161","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于 f : R 2 → R ,设 Γ R ( f ) 是一个二维代数定义图,即一个二元图,其中每个部分集都是 R 2 的副本,并且当且仅当 a 2 + x 2 = f ( a , x ) 时,两个顶点 ( a , a 2 ) 和 [ x , x 2 ] 相邻。已知 Γ R ( X Y ) 的周长为 6,可以扩展为经典实射影平面的点线入射图。然而,是否存在 f ∈ R [ X , Y ] 使得 Γ R ( f ) 的周长为 6 并且与 Γ R ( X Y ) 非同构的情况,这还是个未知数。本文肯定地回答了这个问题,从而提供了一个非经典实射影平面的构造。本文还研究了二元函数 f 族的Γ R ( f ) 的直径和周长。
Nonisomorphic two-dimensional algebraically defined graphs over
R
For , let be a two-dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of and two vertices and are adjacent if and only if . It is known that has girth 6 and can be extended to the point-line incidence graph of the classical real projective plane. However, it was unknown whether there exists such that has girth 6 and is nonisomorphic to . This paper answers this question affirmatively and thus provides a construction of a nonclassical real projective plane. This paper also studies the diameter and girth of for families of bivariate functions .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .