R R 上的非同构二维代数定义图

IF 0.9 3区 数学 Q2 MATHEMATICS
Brian G. Kronenthal, Joe Miller, Alex Nash, Jacob Roeder, Hani Samamah, Tony W. H. Wong
{"title":"R R 上的非同构二维代数定义图","authors":"Brian G. Kronenthal,&nbsp;Joe Miller,&nbsp;Alex Nash,&nbsp;Jacob Roeder,&nbsp;Hani Samamah,&nbsp;Tony W. H. Wong","doi":"10.1002/jgt.23161","DOIUrl":null,"url":null,"abstract":"<p>For <span></span><math>\n \n <mrow>\n <mi>f</mi>\n \n <mo>:</mo>\n \n <msup>\n <mi>R</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>→</mo>\n \n <mi>R</mi>\n </mrow></math>, let <span></span><math>\n \n <mrow>\n <msub>\n <mi>Γ</mi>\n \n <mi>R</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>f</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> be a two-dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of <span></span><math>\n \n <mrow>\n <msup>\n <mi>R</mi>\n \n <mn>2</mn>\n </msup>\n </mrow></math> and two vertices <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>a</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>x</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>x</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n </mrow></math> are adjacent if and only if <span></span><math>\n \n <mrow>\n <msub>\n <mi>a</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>x</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>=</mo>\n \n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>x</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>. It is known that <span></span><math>\n \n <mrow>\n <msub>\n <mi>Γ</mi>\n \n <mi>R</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>X</mi>\n \n <mi>Y</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> has girth 6 and can be extended to the point-line incidence graph of the classical real projective plane. However, it was unknown whether there exists <span></span><math>\n \n <mrow>\n <mi>f</mi>\n \n <mo>∈</mo>\n \n <mi>R</mi>\n \n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>X</mi>\n \n <mo>,</mo>\n \n <mi>Y</mi>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <msub>\n <mi>Γ</mi>\n \n <mi>R</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>f</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> has girth 6 and is nonisomorphic to <span></span><math>\n \n <mrow>\n <msub>\n <mi>Γ</mi>\n \n <mi>R</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>X</mi>\n \n <mi>Y</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>. This paper answers this question affirmatively and thus provides a construction of a nonclassical real projective plane. This paper also studies the diameter and girth of <span></span><math>\n \n <mrow>\n <msub>\n <mi>Γ</mi>\n \n <mi>R</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>f</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> for families of bivariate functions <span></span><math>\n \n <mrow>\n <mi>f</mi>\n </mrow></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"50-64"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonisomorphic two-dimensional algebraically defined graphs over \\n \\n \\n \\n R\\n \\n \\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" altimg=\\\"urn:x-wiley:03649024:media:jgt23161:jgt23161-math-0001\\\" wiley:location=\\\"equation/jgt23161-math-0001.png\\\"><mrow><mrow><mi mathvariant=\\\"double-struck\\\">R</mi></mrow></mrow></math>\",\"authors\":\"Brian G. Kronenthal,&nbsp;Joe Miller,&nbsp;Alex Nash,&nbsp;Jacob Roeder,&nbsp;Hani Samamah,&nbsp;Tony W. H. Wong\",\"doi\":\"10.1002/jgt.23161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <span></span><math>\\n \\n <mrow>\\n <mi>f</mi>\\n \\n <mo>:</mo>\\n \\n <msup>\\n <mi>R</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>→</mo>\\n \\n <mi>R</mi>\\n </mrow></math>, let <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n \\n <mi>R</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>f</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> be a two-dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of <span></span><math>\\n \\n <mrow>\\n <msup>\\n <mi>R</mi>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow></math> and two vertices <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>a</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>[</mo>\\n \\n <mrow>\\n <mi>x</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>x</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mo>]</mo>\\n </mrow>\\n </mrow></math> are adjacent if and only if <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>a</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>x</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>=</mo>\\n \\n <mi>f</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mo>,</mo>\\n \\n <mi>x</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>. It is known that <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n \\n <mi>R</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>X</mi>\\n \\n <mi>Y</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> has girth 6 and can be extended to the point-line incidence graph of the classical real projective plane. However, it was unknown whether there exists <span></span><math>\\n \\n <mrow>\\n <mi>f</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>R</mi>\\n \\n <mrow>\\n <mo>[</mo>\\n \\n <mrow>\\n <mi>X</mi>\\n \\n <mo>,</mo>\\n \\n <mi>Y</mi>\\n </mrow>\\n \\n <mo>]</mo>\\n </mrow>\\n </mrow></math> such that <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n \\n <mi>R</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>f</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> has girth 6 and is nonisomorphic to <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n \\n <mi>R</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>X</mi>\\n \\n <mi>Y</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>. This paper answers this question affirmatively and thus provides a construction of a nonclassical real projective plane. This paper also studies the diameter and girth of <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n \\n <mi>R</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>f</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> for families of bivariate functions <span></span><math>\\n \\n <mrow>\\n <mi>f</mi>\\n </mrow></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 1\",\"pages\":\"50-64\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23161\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23161","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 f : R 2 → R ,设 Γ R ( f ) 是一个二维代数定义图,即一个二元图,其中每个部分集都是 R 2 的副本,并且当且仅当 a 2 + x 2 = f ( a , x ) 时,两个顶点 ( a , a 2 ) 和 [ x , x 2 ] 相邻。已知 Γ R ( X Y ) 的周长为 6,可以扩展为经典实射影平面的点线入射图。然而,是否存在 f ∈ R [ X , Y ] 使得 Γ R ( f ) 的周长为 6 并且与 Γ R ( X Y ) 非同构的情况,这还是个未知数。本文肯定地回答了这个问题,从而提供了一个非经典实射影平面的构造。本文还研究了二元函数 f 族的Γ R ( f ) 的直径和周长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonisomorphic two-dimensional algebraically defined graphs over R R

For f : R 2 R , let Γ R ( f ) be a two-dimensional algebraically defined graph, that is, a bipartite graph where each partite set is a copy of R 2 and two vertices ( a , a 2 ) and [ x , x 2 ] are adjacent if and only if a 2 + x 2 = f ( a , x ) . It is known that Γ R ( X Y ) has girth 6 and can be extended to the point-line incidence graph of the classical real projective plane. However, it was unknown whether there exists f R [ X , Y ] such that Γ R ( f ) has girth 6 and is nonisomorphic to Γ R ( X Y ) . This paper answers this question affirmatively and thus provides a construction of a nonclassical real projective plane. This paper also studies the diameter and girth of Γ R ( f ) for families of bivariate functions f .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信