通过 HZO 铁电集成提高漏极电流和次阈值摆幅的双材料双栅负电容隧道场效应晶体管 (DMDG-NC-TFET) 性能

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
P. Hannah Blessy, A. Shenbagavalli, T. S. Arun Samuel, J. Charles Pravin
{"title":"通过 HZO 铁电集成提高漏极电流和次阈值摆幅的双材料双栅负电容隧道场效应晶体管 (DMDG-NC-TFET) 性能","authors":"P. Hannah Blessy,&nbsp;A. Shenbagavalli,&nbsp;T. S. Arun Samuel,&nbsp;J. Charles Pravin","doi":"10.1002/jnm.70001","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper developed the novel structure of a dual material double gate negative capacitance tunnel field effect transistor (DMDG-NC-TFET) using HZO ferroelectric material. This study systematically improved the drain current and subthreshold swing (SS) by inducing a negative capacitance effect in a gate stack. The proposed gate oxide structure is a stack configuration of ferroelectric material, and high-k dielectric to improve gate control. The Landau–Khalatnikov (LK) equation is used to solve the Poisson equation and get an accurate estimate of the channel potential. Kane's model is used for band-to-band generation rate calculation. For modelling the drain current, the band-to-band tunnelling (G<sub>btbt</sub>) generation rate is integrated using the entire device volume. The impact of varying ferroelectric thickness in the proposed structure has been investigated with the simulated results. The outcomes demonstrate that the device can obtain better improvements in ON current and SS, compared to conventional DMDG-TFET. By contrasting the analytical results with the outcomes of the TCAD simulation, the effectiveness of the proposed methodology has been demonstrated.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"37 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Performance of Dual Material Double Gate Negative Capacitance Tunnel Field Effect Transistor (DMDG-NC-TFET) via HZO Ferroelectric Integration for Improved Drain Current and Subthreshold Swing\",\"authors\":\"P. Hannah Blessy,&nbsp;A. Shenbagavalli,&nbsp;T. S. Arun Samuel,&nbsp;J. Charles Pravin\",\"doi\":\"10.1002/jnm.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper developed the novel structure of a dual material double gate negative capacitance tunnel field effect transistor (DMDG-NC-TFET) using HZO ferroelectric material. This study systematically improved the drain current and subthreshold swing (SS) by inducing a negative capacitance effect in a gate stack. The proposed gate oxide structure is a stack configuration of ferroelectric material, and high-k dielectric to improve gate control. The Landau–Khalatnikov (LK) equation is used to solve the Poisson equation and get an accurate estimate of the channel potential. Kane's model is used for band-to-band generation rate calculation. For modelling the drain current, the band-to-band tunnelling (G<sub>btbt</sub>) generation rate is integrated using the entire device volume. The impact of varying ferroelectric thickness in the proposed structure has been investigated with the simulated results. The outcomes demonstrate that the device can obtain better improvements in ON current and SS, compared to conventional DMDG-TFET. By contrasting the analytical results with the outcomes of the TCAD simulation, the effectiveness of the proposed methodology has been demonstrated.</p>\\n </div>\",\"PeriodicalId\":50300,\"journal\":{\"name\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"volume\":\"37 6\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文利用 HZO 铁电材料开发了结构新颖的双材料双栅负电容隧道场效应晶体管(DMDG-NC-TFET)。这项研究通过在栅极堆栈中诱导负电容效应,系统地改善了漏极电流和亚阈值摆幅(SS)。所提出的栅极氧化物结构是铁电材料和高介电质的堆叠配置,以改善栅极控制。兰道-哈拉特尼科夫(LK)方程用于求解泊松方程,并获得沟道电势的准确估计值。Kane 模型用于计算带对带生成率。为了建立漏极电流模型,使用整个器件体积对带对带隧穿(Gbtbt)产生率进行了整合。模拟结果研究了拟议结构中不同铁电厚度的影响。结果表明,与传统的 DMDG-TFET 相比,该器件能更好地改善导通电流和 SS。通过将分析结果与 TCAD 仿真结果进行对比,证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Performance of Dual Material Double Gate Negative Capacitance Tunnel Field Effect Transistor (DMDG-NC-TFET) via HZO Ferroelectric Integration for Improved Drain Current and Subthreshold Swing

This paper developed the novel structure of a dual material double gate negative capacitance tunnel field effect transistor (DMDG-NC-TFET) using HZO ferroelectric material. This study systematically improved the drain current and subthreshold swing (SS) by inducing a negative capacitance effect in a gate stack. The proposed gate oxide structure is a stack configuration of ferroelectric material, and high-k dielectric to improve gate control. The Landau–Khalatnikov (LK) equation is used to solve the Poisson equation and get an accurate estimate of the channel potential. Kane's model is used for band-to-band generation rate calculation. For modelling the drain current, the band-to-band tunnelling (Gbtbt) generation rate is integrated using the entire device volume. The impact of varying ferroelectric thickness in the proposed structure has been investigated with the simulated results. The outcomes demonstrate that the device can obtain better improvements in ON current and SS, compared to conventional DMDG-TFET. By contrasting the analytical results with the outcomes of the TCAD simulation, the effectiveness of the proposed methodology has been demonstrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信