作为场论的开放弦重正化群流

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Julius Hristov
{"title":"作为场论的开放弦重正化群流","authors":"Julius Hristov","doi":"10.1002/prop.202300266","DOIUrl":null,"url":null,"abstract":"<p>This article shows that the integral flow-lines of the RG-flow of open string theory can be interpreted as the solitons of a Hořova–Lifshitz sigma-model of open membranes. The authors argue that the effective background description of this model implies the g-theorem of open string theory. Its close connection to boundary string field theory is described. Additionally, the study endows the Hilbert space of the open membrane with a graded non-commutative, associative, cyclic algebra and construct an open membrane field theory, whose action measures the energy difference between different backgrounds in open string field theory. The authors use an identity-based membrane field to proof Sen's conjecture. Finally, the ideas are applied to the topological string and it is shown that the membrane action is quantized in equivariant K-theory of the moduli space of framed instantons.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 11","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202300266","citationCount":"0","resultStr":"{\"title\":\"Open String Renormalization Group Flow as a Field Theory\",\"authors\":\"Julius Hristov\",\"doi\":\"10.1002/prop.202300266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article shows that the integral flow-lines of the RG-flow of open string theory can be interpreted as the solitons of a Hořova–Lifshitz sigma-model of open membranes. The authors argue that the effective background description of this model implies the g-theorem of open string theory. Its close connection to boundary string field theory is described. Additionally, the study endows the Hilbert space of the open membrane with a graded non-commutative, associative, cyclic algebra and construct an open membrane field theory, whose action measures the energy difference between different backgrounds in open string field theory. The authors use an identity-based membrane field to proof Sen's conjecture. Finally, the ideas are applied to the topological string and it is shown that the membrane action is quantized in equivariant K-theory of the moduli space of framed instantons.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"72 11\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202300266\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300266\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300266","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文表明,开放弦理论的 RG 流的积分流线可以解释为开放膜的 Hořova-Lifshitz sigma 模型的孤子。作者认为,这一模型的有效背景描述意味着开放弦理论的 g 定理。作者还描述了它与边界弦场理论的密切联系。此外,研究还为开放膜的希尔伯特空间赋予了分级非交换、关联、循环代数,并构建了开放膜场论,其作用测量了开放弦场论中不同背景之间的能量差。作者利用基于同一性的膜场证明了森的猜想。最后,这些思想被应用于拓扑弦,并证明膜作用在有框瞬子模量空间的等变 K 理论中被量化了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Open String Renormalization Group Flow as a Field Theory

Open String Renormalization Group Flow as a Field Theory

This article shows that the integral flow-lines of the RG-flow of open string theory can be interpreted as the solitons of a Hořova–Lifshitz sigma-model of open membranes. The authors argue that the effective background description of this model implies the g-theorem of open string theory. Its close connection to boundary string field theory is described. Additionally, the study endows the Hilbert space of the open membrane with a graded non-commutative, associative, cyclic algebra and construct an open membrane field theory, whose action measures the energy difference between different backgrounds in open string field theory. The authors use an identity-based membrane field to proof Sen's conjecture. Finally, the ideas are applied to the topological string and it is shown that the membrane action is quantized in equivariant K-theory of the moduli space of framed instantons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信