Junsik Bang , Hyoseung Lim , Sangwoo Park , Jungkyu Kim , Seungoh Jung , Heecheol Yun , Sungwook Won , Subong Park , Hyo Won Kwak
{"title":"添加γ-戊内酯可稳定明胶的水性电纺丝","authors":"Junsik Bang , Hyoseung Lim , Sangwoo Park , Jungkyu Kim , Seungoh Jung , Heecheol Yun , Sungwook Won , Subong Park , Hyo Won Kwak","doi":"10.1016/j.foodhyd.2024.110853","DOIUrl":null,"url":null,"abstract":"<div><div>Gelatin is an attractive biocompatible and biodegradable material for biopolymeric nanofiber production, but its gelation at room temperature hinders aqueous electrospinning processes. This study introduces gamma-valerolactone (GVL) as an eco-friendly additive to suppress cooling-induced gelation, enabling stable room-temperature electrospinning of gelatin solutions. We investigated the dissolution behavior, temperature-dependent gelation, and rheological characteristics of gelatin with varying water/GVL ratios. The addition of GVL effectively suppressed gelation, maintaining the solution state at room temperature. Despite the presence of GVL, gelatin solutions exhibited chain entanglement at higher concentrations, resulting in uniform nanofibers with an average diameter of 450 nm produced <em>via</em> electrospinning. Furthermore, incorporating ribose as a natural cross-linking agent and performing the Maillard reaction enhanced nanofiber density and provided structural stability under moist conditions.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110853"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addition of gamma-valerolactone stabilizes aqueous electrospinning of gelatin\",\"authors\":\"Junsik Bang , Hyoseung Lim , Sangwoo Park , Jungkyu Kim , Seungoh Jung , Heecheol Yun , Sungwook Won , Subong Park , Hyo Won Kwak\",\"doi\":\"10.1016/j.foodhyd.2024.110853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gelatin is an attractive biocompatible and biodegradable material for biopolymeric nanofiber production, but its gelation at room temperature hinders aqueous electrospinning processes. This study introduces gamma-valerolactone (GVL) as an eco-friendly additive to suppress cooling-induced gelation, enabling stable room-temperature electrospinning of gelatin solutions. We investigated the dissolution behavior, temperature-dependent gelation, and rheological characteristics of gelatin with varying water/GVL ratios. The addition of GVL effectively suppressed gelation, maintaining the solution state at room temperature. Despite the presence of GVL, gelatin solutions exhibited chain entanglement at higher concentrations, resulting in uniform nanofibers with an average diameter of 450 nm produced <em>via</em> electrospinning. Furthermore, incorporating ribose as a natural cross-linking agent and performing the Maillard reaction enhanced nanofiber density and provided structural stability under moist conditions.</div></div>\",\"PeriodicalId\":320,\"journal\":{\"name\":\"Food Hydrocolloids\",\"volume\":\"160 \",\"pages\":\"Article 110853\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268005X24011275\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24011275","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Addition of gamma-valerolactone stabilizes aqueous electrospinning of gelatin
Gelatin is an attractive biocompatible and biodegradable material for biopolymeric nanofiber production, but its gelation at room temperature hinders aqueous electrospinning processes. This study introduces gamma-valerolactone (GVL) as an eco-friendly additive to suppress cooling-induced gelation, enabling stable room-temperature electrospinning of gelatin solutions. We investigated the dissolution behavior, temperature-dependent gelation, and rheological characteristics of gelatin with varying water/GVL ratios. The addition of GVL effectively suppressed gelation, maintaining the solution state at room temperature. Despite the presence of GVL, gelatin solutions exhibited chain entanglement at higher concentrations, resulting in uniform nanofibers with an average diameter of 450 nm produced via electrospinning. Furthermore, incorporating ribose as a natural cross-linking agent and performing the Maillard reaction enhanced nanofiber density and provided structural stability under moist conditions.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.