Deepika Sharma, Gregory R. Ziegler, Federico M. Harte
{"title":"κ-卡拉胶/酪蛋白纳米纤维的制备和物理力学性能","authors":"Deepika Sharma, Gregory R. Ziegler, Federico M. Harte","doi":"10.1016/j.foodhyd.2024.110855","DOIUrl":null,"url":null,"abstract":"<div><div>The low molecular weight of casein proteins (19–25 kDa) and their self-aggregation limit the electrospinnability of casein nanofibers. Here, the influence of ethanol content (0–60 %) and temperature (20–80 °C) on the state of κ-carrageenan dispersions and their subsequent influence on the electrospinnability and physicomechanical attributes of casein-based EMs was evaluated. κ-carrageenan/casein dispersions prepared at 50% ethanol, pH 10, and 60 °C resulted in the formation of EMs with few bead defects. These conditions lead to the dissociation of casein aggregates and the transformation of κ-carrageenan conformation. More uniform fibrous morphologies with minimum bead defects (2.0 x 10<sup>−3</sup>/μm<sup>2</sup>) were obtained for 1 wt % κ-carrageenan in casein EMs. A maximum strength of ∼0.2 MPa and modulus of ∼12 MPa was obtained for as spun mats with 1 wt% κ-carrageenan in casein. On exposure to a relative humidity of 100% for 48 h, these mats adsorbed 140 % of their weight in water, became solid films, and increased in strength and modulus >10-fold with a 2-fold decrease in elongation at break. This study demonstrates the influence of κ-carrageenan on the electrospinnability of casein proteins to fabricate novel biodegradable casein-based nano-structured mats with potential for food, cosmetic, packaging, and biomedical applications.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110855"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and physicomechanical performance of κ-carrageenan/casein nanofibers\",\"authors\":\"Deepika Sharma, Gregory R. Ziegler, Federico M. Harte\",\"doi\":\"10.1016/j.foodhyd.2024.110855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The low molecular weight of casein proteins (19–25 kDa) and their self-aggregation limit the electrospinnability of casein nanofibers. Here, the influence of ethanol content (0–60 %) and temperature (20–80 °C) on the state of κ-carrageenan dispersions and their subsequent influence on the electrospinnability and physicomechanical attributes of casein-based EMs was evaluated. κ-carrageenan/casein dispersions prepared at 50% ethanol, pH 10, and 60 °C resulted in the formation of EMs with few bead defects. These conditions lead to the dissociation of casein aggregates and the transformation of κ-carrageenan conformation. More uniform fibrous morphologies with minimum bead defects (2.0 x 10<sup>−3</sup>/μm<sup>2</sup>) were obtained for 1 wt % κ-carrageenan in casein EMs. A maximum strength of ∼0.2 MPa and modulus of ∼12 MPa was obtained for as spun mats with 1 wt% κ-carrageenan in casein. On exposure to a relative humidity of 100% for 48 h, these mats adsorbed 140 % of their weight in water, became solid films, and increased in strength and modulus >10-fold with a 2-fold decrease in elongation at break. This study demonstrates the influence of κ-carrageenan on the electrospinnability of casein proteins to fabricate novel biodegradable casein-based nano-structured mats with potential for food, cosmetic, packaging, and biomedical applications.</div></div>\",\"PeriodicalId\":320,\"journal\":{\"name\":\"Food Hydrocolloids\",\"volume\":\"160 \",\"pages\":\"Article 110855\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268005X24011299\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24011299","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Fabrication and physicomechanical performance of κ-carrageenan/casein nanofibers
The low molecular weight of casein proteins (19–25 kDa) and their self-aggregation limit the electrospinnability of casein nanofibers. Here, the influence of ethanol content (0–60 %) and temperature (20–80 °C) on the state of κ-carrageenan dispersions and their subsequent influence on the electrospinnability and physicomechanical attributes of casein-based EMs was evaluated. κ-carrageenan/casein dispersions prepared at 50% ethanol, pH 10, and 60 °C resulted in the formation of EMs with few bead defects. These conditions lead to the dissociation of casein aggregates and the transformation of κ-carrageenan conformation. More uniform fibrous morphologies with minimum bead defects (2.0 x 10−3/μm2) were obtained for 1 wt % κ-carrageenan in casein EMs. A maximum strength of ∼0.2 MPa and modulus of ∼12 MPa was obtained for as spun mats with 1 wt% κ-carrageenan in casein. On exposure to a relative humidity of 100% for 48 h, these mats adsorbed 140 % of their weight in water, became solid films, and increased in strength and modulus >10-fold with a 2-fold decrease in elongation at break. This study demonstrates the influence of κ-carrageenan on the electrospinnability of casein proteins to fabricate novel biodegradable casein-based nano-structured mats with potential for food, cosmetic, packaging, and biomedical applications.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.