生物能源作物产量预测机器学习的挑战与机遇:综述

IF 7.1 2区 工程技术 Q1 ENERGY & FUELS
Joseph Lepnaan Dayil , Olugbenga Akande , Alaa El Din Mahmoud , Richard Kimera , Olakunle Omole
{"title":"生物能源作物产量预测机器学习的挑战与机遇:综述","authors":"Joseph Lepnaan Dayil ,&nbsp;Olugbenga Akande ,&nbsp;Alaa El Din Mahmoud ,&nbsp;Richard Kimera ,&nbsp;Olakunle Omole","doi":"10.1016/j.seta.2024.104057","DOIUrl":null,"url":null,"abstract":"<div><div>Bioenergy offers a sustainable alternative to fossil fuels, addressing energy security and climate change concerns. This paper reviews the current landscape of machine learning (ML) applications in predicting bioenergy crop yields. It explores the potential of ML models, such as random forests, support vector machines, and neural networks, to improve yield predictions by analyzing complex agricultural datasets, including soil quality, weather conditions, and crop characteristics. The review highlights the challenges of implementing ML in bioenergy systems, such as data limitations, model interpretability, and scalability. Key findings indicate that integrating ML with traditional agricultural practices can optimize resource allocation, enhance yield predictions, and promote more sustainable bioenergy production. The paper also discusses future research directions for improving ML techniques to advance bioenergy crop yield prediction and sustainability.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"73 ","pages":"Article 104057"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges and opportunities in Machine learning for bioenergy crop yield Prediction: A review\",\"authors\":\"Joseph Lepnaan Dayil ,&nbsp;Olugbenga Akande ,&nbsp;Alaa El Din Mahmoud ,&nbsp;Richard Kimera ,&nbsp;Olakunle Omole\",\"doi\":\"10.1016/j.seta.2024.104057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bioenergy offers a sustainable alternative to fossil fuels, addressing energy security and climate change concerns. This paper reviews the current landscape of machine learning (ML) applications in predicting bioenergy crop yields. It explores the potential of ML models, such as random forests, support vector machines, and neural networks, to improve yield predictions by analyzing complex agricultural datasets, including soil quality, weather conditions, and crop characteristics. The review highlights the challenges of implementing ML in bioenergy systems, such as data limitations, model interpretability, and scalability. Key findings indicate that integrating ML with traditional agricultural practices can optimize resource allocation, enhance yield predictions, and promote more sustainable bioenergy production. The paper also discusses future research directions for improving ML techniques to advance bioenergy crop yield prediction and sustainability.</div></div>\",\"PeriodicalId\":56019,\"journal\":{\"name\":\"Sustainable Energy Technologies and Assessments\",\"volume\":\"73 \",\"pages\":\"Article 104057\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Technologies and Assessments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213138824004533\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138824004533","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

生物能源是化石燃料的可持续替代品,可解决能源安全和气候变化问题。本文回顾了机器学习(ML)在预测生物能源作物产量方面的应用现状。它探讨了随机森林、支持向量机和神经网络等 ML 模型的潜力,通过分析复杂的农业数据集(包括土壤质量、天气条件和作物特征)来提高产量预测。综述强调了在生物能源系统中实施 ML 所面临的挑战,如数据限制、模型可解释性和可扩展性。主要研究结果表明,将 ML 与传统农业实践相结合,可以优化资源配置,提高产量预测,促进更可持续的生物能源生产。本文还讨论了改进 ML 技术以促进生物能源作物产量预测和可持续性的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges and opportunities in Machine learning for bioenergy crop yield Prediction: A review
Bioenergy offers a sustainable alternative to fossil fuels, addressing energy security and climate change concerns. This paper reviews the current landscape of machine learning (ML) applications in predicting bioenergy crop yields. It explores the potential of ML models, such as random forests, support vector machines, and neural networks, to improve yield predictions by analyzing complex agricultural datasets, including soil quality, weather conditions, and crop characteristics. The review highlights the challenges of implementing ML in bioenergy systems, such as data limitations, model interpretability, and scalability. Key findings indicate that integrating ML with traditional agricultural practices can optimize resource allocation, enhance yield predictions, and promote more sustainable bioenergy production. The paper also discusses future research directions for improving ML techniques to advance bioenergy crop yield prediction and sustainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy Technologies and Assessments
Sustainable Energy Technologies and Assessments Energy-Renewable Energy, Sustainability and the Environment
CiteScore
12.70
自引率
12.50%
发文量
1091
期刊介绍: Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信