复合材料机翼静态气动弹性计算分析的 DG-VLM 框架

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Dario Campagna , Vincenzo Gulizzi , Ivano Benedetti
{"title":"复合材料机翼静态气动弹性计算分析的 DG-VLM 框架","authors":"Dario Campagna ,&nbsp;Vincenzo Gulizzi ,&nbsp;Ivano Benedetti","doi":"10.1016/j.compstruct.2024.118697","DOIUrl":null,"url":null,"abstract":"<div><div>A computational framework for static aeroelastic analysis of composite laminated plates is proposed, whose novelty is the conjoined use of a structural discontinuous Galerkin (DG) formulation and an aerodynamic vortex lattice method (VLM), suitably coupled for the monolithic solution of the aeroelastic problem. The structural method is built on variable-order generalized kinematics, which allows the seamless adoption of either beam or plate modeling strategies, with on-demand order of polynomial approximation over the transverse and in-plane dimensions of the structural elements. The underlying DG formulation also simplifies the coupling between the structural and aerodynamic grids, thus providing a versatile tool for the aeroelastic analysis of either low or high aspect-ratio composite wings. Several numerical tests have been performed to assess the convergence features of the proposed framework as well as its accuracy with respect to available computational and experimental benchmark data. The obtained results confirm its robustness and highlight its potential for aeroelastic assessments in early aircraft conceptual design.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"353 ","pages":"Article 118697"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DG-VLM framework for computational static aeroelastic analysis of composite wings\",\"authors\":\"Dario Campagna ,&nbsp;Vincenzo Gulizzi ,&nbsp;Ivano Benedetti\",\"doi\":\"10.1016/j.compstruct.2024.118697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A computational framework for static aeroelastic analysis of composite laminated plates is proposed, whose novelty is the conjoined use of a structural discontinuous Galerkin (DG) formulation and an aerodynamic vortex lattice method (VLM), suitably coupled for the monolithic solution of the aeroelastic problem. The structural method is built on variable-order generalized kinematics, which allows the seamless adoption of either beam or plate modeling strategies, with on-demand order of polynomial approximation over the transverse and in-plane dimensions of the structural elements. The underlying DG formulation also simplifies the coupling between the structural and aerodynamic grids, thus providing a versatile tool for the aeroelastic analysis of either low or high aspect-ratio composite wings. Several numerical tests have been performed to assess the convergence features of the proposed framework as well as its accuracy with respect to available computational and experimental benchmark data. The obtained results confirm its robustness and highlight its potential for aeroelastic assessments in early aircraft conceptual design.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"353 \",\"pages\":\"Article 118697\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324008250\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324008250","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于复合材料层压板静态气动弹性分析的计算框架,其新颖之处在于结合使用了结构非连续伽勒金(DG)公式和空气动力学涡流网格法(VLM),并将其适当地耦合用于气动弹性问题的整体求解。结构方法建立在可变阶广义运动学基础上,允许无缝采用梁或板建模策略,并可根据需要对结构元素的横向和平面尺寸进行多项式近似阶数。基本的 DG 公式还简化了结构网格和空气动力学网格之间的耦合,从而为低纵横比或高纵横比复合材料机翼的气动弹性分析提供了一个通用工具。为了评估所提出框架的收敛特性及其与现有计算和实验基准数据相关的准确性,我们进行了多次数值测试。所获得的结果证实了其稳健性,并突出了其在早期飞机概念设计中进行气动弹性评估的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A DG-VLM framework for computational static aeroelastic analysis of composite wings
A computational framework for static aeroelastic analysis of composite laminated plates is proposed, whose novelty is the conjoined use of a structural discontinuous Galerkin (DG) formulation and an aerodynamic vortex lattice method (VLM), suitably coupled for the monolithic solution of the aeroelastic problem. The structural method is built on variable-order generalized kinematics, which allows the seamless adoption of either beam or plate modeling strategies, with on-demand order of polynomial approximation over the transverse and in-plane dimensions of the structural elements. The underlying DG formulation also simplifies the coupling between the structural and aerodynamic grids, thus providing a versatile tool for the aeroelastic analysis of either low or high aspect-ratio composite wings. Several numerical tests have been performed to assess the convergence features of the proposed framework as well as its accuracy with respect to available computational and experimental benchmark data. The obtained results confirm its robustness and highlight its potential for aeroelastic assessments in early aircraft conceptual design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信