{"title":"利用相变材料改善锂离子电池热状态的最新进展和前景:内部和外部传热增强因素","authors":"Sagar Vashisht , Rajat , Dibakar Rakshit","doi":"10.1016/j.etran.2024.100381","DOIUrl":null,"url":null,"abstract":"<div><div>Electric vehicles (EVs) play a crucial role in reducing fuel consumption and emissions, underscoring the importance of lithium-ion batteries (Li-ion) in powering these vehicles. However, Li-ion batteries are susceptible to degradation, capacity loss, and catastrophic failure due to temperature fluctuations, necessitating efficient thermal management. This review explores advancements and challenges in PCM-based battery thermal management systems (BTMS), focusing on internal and external factors influencing performance. It discusses internal factors such as material-level improvements in PCM-based BTMS, including solutions like SiC and EG-based PCM, flexible composite PCM, and serpentine-shaped PCM. External factors, such as fluid flow dynamics, cell spacing, and shape, significantly influence BTMS performance. Critical considerations include evaluating air- and liquid-based approaches and integrating heat pipes with PCM for passive BTMS. Furthermore, understanding the influence of these factors on temperature uniformity and heat dissipation is essential. The paper concludes by outlining future trends in PCM-based battery thermal management, emphasizing the utilization of flexible PCM and copper foam-enhanced PCM alongside hybrid BTMS configurations to optimize performance. By comprehensively addressing internal and external factors, BTMS can enhance Li-ion battery efficiency and lifespan in EVs.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"22 ","pages":"Article 100381"},"PeriodicalIF":15.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances and perspectives in enhancing thermal state of lithium-ion batteries with phase change materials: Internal and external heat transfer enhancement factors\",\"authors\":\"Sagar Vashisht , Rajat , Dibakar Rakshit\",\"doi\":\"10.1016/j.etran.2024.100381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electric vehicles (EVs) play a crucial role in reducing fuel consumption and emissions, underscoring the importance of lithium-ion batteries (Li-ion) in powering these vehicles. However, Li-ion batteries are susceptible to degradation, capacity loss, and catastrophic failure due to temperature fluctuations, necessitating efficient thermal management. This review explores advancements and challenges in PCM-based battery thermal management systems (BTMS), focusing on internal and external factors influencing performance. It discusses internal factors such as material-level improvements in PCM-based BTMS, including solutions like SiC and EG-based PCM, flexible composite PCM, and serpentine-shaped PCM. External factors, such as fluid flow dynamics, cell spacing, and shape, significantly influence BTMS performance. Critical considerations include evaluating air- and liquid-based approaches and integrating heat pipes with PCM for passive BTMS. Furthermore, understanding the influence of these factors on temperature uniformity and heat dissipation is essential. The paper concludes by outlining future trends in PCM-based battery thermal management, emphasizing the utilization of flexible PCM and copper foam-enhanced PCM alongside hybrid BTMS configurations to optimize performance. By comprehensively addressing internal and external factors, BTMS can enhance Li-ion battery efficiency and lifespan in EVs.</div></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":\"22 \",\"pages\":\"Article 100381\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116824000717\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000717","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Recent advances and perspectives in enhancing thermal state of lithium-ion batteries with phase change materials: Internal and external heat transfer enhancement factors
Electric vehicles (EVs) play a crucial role in reducing fuel consumption and emissions, underscoring the importance of lithium-ion batteries (Li-ion) in powering these vehicles. However, Li-ion batteries are susceptible to degradation, capacity loss, and catastrophic failure due to temperature fluctuations, necessitating efficient thermal management. This review explores advancements and challenges in PCM-based battery thermal management systems (BTMS), focusing on internal and external factors influencing performance. It discusses internal factors such as material-level improvements in PCM-based BTMS, including solutions like SiC and EG-based PCM, flexible composite PCM, and serpentine-shaped PCM. External factors, such as fluid flow dynamics, cell spacing, and shape, significantly influence BTMS performance. Critical considerations include evaluating air- and liquid-based approaches and integrating heat pipes with PCM for passive BTMS. Furthermore, understanding the influence of these factors on temperature uniformity and heat dissipation is essential. The paper concludes by outlining future trends in PCM-based battery thermal management, emphasizing the utilization of flexible PCM and copper foam-enhanced PCM alongside hybrid BTMS configurations to optimize performance. By comprehensively addressing internal and external factors, BTMS can enhance Li-ion battery efficiency and lifespan in EVs.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.