有界域中数据准备不足的等熵纳维-斯托克斯方程全时解的不可压缩极限

IF 2.4 2区 数学 Q1 MATHEMATICS
Yaobin Ou , Lu Yang
{"title":"有界域中数据准备不足的等熵纳维-斯托克斯方程全时解的不可压缩极限","authors":"Yaobin Ou ,&nbsp;Lu Yang","doi":"10.1016/j.jde.2024.11.009","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the incompressible limit of <em>all-time</em> strong solutions to the isentropic compressible Navier-Stokes equations with <em>ill-prepared</em> initial data and slip boundary condition in three-dimensional bounded domains. The uniform estimates with respect to both the Mach number <span><math><mi>ϵ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and all time <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> are derived by establishing a nonlinear integral inequality. In contrast to previous results for well-prepared initial data, the time derivatives of the velocity are unbounded which leads to the loss of strong convergence of the velocity. The novelties of this paper are to establish weighted energy estimates of new-type and to carefully combine the estimates for the fast variables and the slow variables, especially for the highest-order spatial derivatives of the fast variables. The convergence to the global strong solution of incompressible Navier-Stokes equations is shown by applying the Helmoltz decomposition and the strong convergence of the incompressible part of the velocity.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 2293-2323"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incompressible limit of all-time solutions to isentropic Navier-Stokes equations with ill-prepared data in bounded domains\",\"authors\":\"Yaobin Ou ,&nbsp;Lu Yang\",\"doi\":\"10.1016/j.jde.2024.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the incompressible limit of <em>all-time</em> strong solutions to the isentropic compressible Navier-Stokes equations with <em>ill-prepared</em> initial data and slip boundary condition in three-dimensional bounded domains. The uniform estimates with respect to both the Mach number <span><math><mi>ϵ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and all time <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> are derived by establishing a nonlinear integral inequality. In contrast to previous results for well-prepared initial data, the time derivatives of the velocity are unbounded which leads to the loss of strong convergence of the velocity. The novelties of this paper are to establish weighted energy estimates of new-type and to carefully combine the estimates for the fast variables and the slow variables, especially for the highest-order spatial derivatives of the fast variables. The convergence to the global strong solution of incompressible Navier-Stokes equations is shown by applying the Helmoltz decomposition and the strong convergence of the incompressible part of the velocity.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 2293-2323\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624007253\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007253","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了等熵可压缩纳维-斯托克斯方程的全时强解的不可压缩极限,该方程在三维有界域中具有准备不足的初始数据和滑移边界条件。通过建立非线性积分不等式,得出了关于马赫数 ϵ∈(0,1]和所有时间 t∈[0,+∞)的均匀估计值。与之前针对准备充分的初始数据的结果不同,速度的时间导数是无约束的,这导致速度失去了很强的收敛性。本文的新颖之处在于建立了新型的加权能量估计,并将快速变量和慢速变量的估计,尤其是快速变量的最高阶空间导数的估计小心地结合起来。通过应用 Helmoltz 分解和速度不可压缩部分的强收敛性,证明了不可压缩 Navier-Stokes 方程全局强解的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incompressible limit of all-time solutions to isentropic Navier-Stokes equations with ill-prepared data in bounded domains
In this paper, we study the incompressible limit of all-time strong solutions to the isentropic compressible Navier-Stokes equations with ill-prepared initial data and slip boundary condition in three-dimensional bounded domains. The uniform estimates with respect to both the Mach number ϵ(0,1] and all time t[0,+) are derived by establishing a nonlinear integral inequality. In contrast to previous results for well-prepared initial data, the time derivatives of the velocity are unbounded which leads to the loss of strong convergence of the velocity. The novelties of this paper are to establish weighted energy estimates of new-type and to carefully combine the estimates for the fast variables and the slow variables, especially for the highest-order spatial derivatives of the fast variables. The convergence to the global strong solution of incompressible Navier-Stokes equations is shown by applying the Helmoltz decomposition and the strong convergence of the incompressible part of the velocity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信