Peixin Niu , Diedie Xu , Jun Zhu , Zhiying Zhao , Ailing Sun , Liuhe Wei , Yuhan Li
{"title":"用于文物修复和发光二极管封装的聚氨酯改性室温固化环氧超级粘合剂","authors":"Peixin Niu , Diedie Xu , Jun Zhu , Zhiying Zhao , Ailing Sun , Liuhe Wei , Yuhan Li","doi":"10.1016/j.matdes.2024.113480","DOIUrl":null,"url":null,"abstract":"<div><div>Epoxy adhesives are widely used for their strong adhesion but face challenges due to high curing temperatures and brittleness, limiting their application in precision manufacturing and fine industries. In an innovative endeavor to address these limitations, we have synthesized a novel adhesive system by incorporating epoxy-functionalized polyurethane into the conventional bisphenol A-based epoxy resin. Upon subjecting the adhesive to a 24h curing period at ambient temperature, the resulting material exhibited remarkable mechanical properties. Specifically, the shear strength, tensile strength, and fracture toughness of the cured adhesive were 20.6 MPa, 36.7 MPa, and 2.87 MPa·m<sup>1/2</sup>, respectively, while the unmodified epoxy resin had values of only 1.9 MPa, 15.5 MPa, and 1.0 MPa·m<sup>1/2</sup>. Adhesive system unique crosslinked structure has been discovered to confer blue aggregation-induced emission fluorescent properties. We have successfully applied this interesting characteristic in the restoration of cultural relics and the encapsulation of light emitting diode. The research has yielded a groundbreaking adhesive formulation that not only overcomes the traditional limitations associated with epoxy materials but also introduces novel functionalities that extend its utility into diverse and sophisticated applications.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113480"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyurethane-modified room-temperature curing epoxy super adhesive for artifact restoration and light emitting diode encapsulation\",\"authors\":\"Peixin Niu , Diedie Xu , Jun Zhu , Zhiying Zhao , Ailing Sun , Liuhe Wei , Yuhan Li\",\"doi\":\"10.1016/j.matdes.2024.113480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Epoxy adhesives are widely used for their strong adhesion but face challenges due to high curing temperatures and brittleness, limiting their application in precision manufacturing and fine industries. In an innovative endeavor to address these limitations, we have synthesized a novel adhesive system by incorporating epoxy-functionalized polyurethane into the conventional bisphenol A-based epoxy resin. Upon subjecting the adhesive to a 24h curing period at ambient temperature, the resulting material exhibited remarkable mechanical properties. Specifically, the shear strength, tensile strength, and fracture toughness of the cured adhesive were 20.6 MPa, 36.7 MPa, and 2.87 MPa·m<sup>1/2</sup>, respectively, while the unmodified epoxy resin had values of only 1.9 MPa, 15.5 MPa, and 1.0 MPa·m<sup>1/2</sup>. Adhesive system unique crosslinked structure has been discovered to confer blue aggregation-induced emission fluorescent properties. We have successfully applied this interesting characteristic in the restoration of cultural relics and the encapsulation of light emitting diode. The research has yielded a groundbreaking adhesive formulation that not only overcomes the traditional limitations associated with epoxy materials but also introduces novel functionalities that extend its utility into diverse and sophisticated applications.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"248 \",\"pages\":\"Article 113480\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524008554\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524008554","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Polyurethane-modified room-temperature curing epoxy super adhesive for artifact restoration and light emitting diode encapsulation
Epoxy adhesives are widely used for their strong adhesion but face challenges due to high curing temperatures and brittleness, limiting their application in precision manufacturing and fine industries. In an innovative endeavor to address these limitations, we have synthesized a novel adhesive system by incorporating epoxy-functionalized polyurethane into the conventional bisphenol A-based epoxy resin. Upon subjecting the adhesive to a 24h curing period at ambient temperature, the resulting material exhibited remarkable mechanical properties. Specifically, the shear strength, tensile strength, and fracture toughness of the cured adhesive were 20.6 MPa, 36.7 MPa, and 2.87 MPa·m1/2, respectively, while the unmodified epoxy resin had values of only 1.9 MPa, 15.5 MPa, and 1.0 MPa·m1/2. Adhesive system unique crosslinked structure has been discovered to confer blue aggregation-induced emission fluorescent properties. We have successfully applied this interesting characteristic in the restoration of cultural relics and the encapsulation of light emitting diode. The research has yielded a groundbreaking adhesive formulation that not only overcomes the traditional limitations associated with epoxy materials but also introduces novel functionalities that extend its utility into diverse and sophisticated applications.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.