Jiyu Xie , Xinli Sun , Yanwei Xia , Lili Tao , Taimeng Tan , Nan Zhang , Weibing Xun , Ruifu Zhang , Ákos T. Kovács , Zhihui Xu , Qirong Shen
{"title":"弥合差距:生物膜介导的韦氏芽孢杆菌在贵州毛霉菌丝体上的建立","authors":"Jiyu Xie , Xinli Sun , Yanwei Xia , Lili Tao , Taimeng Tan , Nan Zhang , Weibing Xun , Ruifu Zhang , Ákos T. Kovács , Zhihui Xu , Qirong Shen","doi":"10.1016/j.bioflm.2024.100239","DOIUrl":null,"url":null,"abstract":"<div><div>Bacterial-fungal interactions (BFIs) are important in ecosystem dynamics, especially within the soil rhizosphere. The bacterium <em>Bacillus velezensis</em> SQR9 and the fungus <em>Trichoderma guizhouense</em> NJAU 4742 have gathered considerable attention due to their roles in promoting plant growth and protecting their host against pathogens. In this study, we utilized these two model microorganisms to investigate BFIs. We firstly demonstrate that while co-inoculation of <em>B. velezensis</em> and <em>T. guizhouense</em> could promote tomato growth, these two microorganisms display mutual antagonism on agar solidified medium. To resolve this contradiction, we developed an inoculation method, that allows <em>B. velezensis</em> colonization of <em>T</em>. <em>guizhouense</em> hyphae and performed a transcriptome analysis. During colonization of the fungal hyphae, <em>B. velezensis</em> SQR9 upregulates expression of biofilm related genes (e.g. <em>eps, tasA</em>, and <em>bslA)</em> that is distinct from free-living cells. This result suggested an intricate association between extracellular matrix expression and hyphae colonization. In accordance, deletion <em>epsD</em>, <em>tasA, or</em> both <em>epsD</em> and <em>tasA</em> genes of <em>B. velezensis</em> diminished colonization of the <em>T</em>. <em>guizhouense</em> hyphae. The insights from our study demonstrate that soil BFIs are more complex than we understood, potentially involving both competition and cooperation. These intricate biofilm-mediated BFI dynamics might contribute to the remarkable diversity observed within soil microbiota, providing a fresh perspective for further exploration of BFIs in the plant rhizosphere.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"8 ","pages":"Article 100239"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the Gap: Biofilm-mediated establishment of Bacillus velezensis on Trichoderma guizhouense mycelia\",\"authors\":\"Jiyu Xie , Xinli Sun , Yanwei Xia , Lili Tao , Taimeng Tan , Nan Zhang , Weibing Xun , Ruifu Zhang , Ákos T. Kovács , Zhihui Xu , Qirong Shen\",\"doi\":\"10.1016/j.bioflm.2024.100239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bacterial-fungal interactions (BFIs) are important in ecosystem dynamics, especially within the soil rhizosphere. The bacterium <em>Bacillus velezensis</em> SQR9 and the fungus <em>Trichoderma guizhouense</em> NJAU 4742 have gathered considerable attention due to their roles in promoting plant growth and protecting their host against pathogens. In this study, we utilized these two model microorganisms to investigate BFIs. We firstly demonstrate that while co-inoculation of <em>B. velezensis</em> and <em>T. guizhouense</em> could promote tomato growth, these two microorganisms display mutual antagonism on agar solidified medium. To resolve this contradiction, we developed an inoculation method, that allows <em>B. velezensis</em> colonization of <em>T</em>. <em>guizhouense</em> hyphae and performed a transcriptome analysis. During colonization of the fungal hyphae, <em>B. velezensis</em> SQR9 upregulates expression of biofilm related genes (e.g. <em>eps, tasA</em>, and <em>bslA)</em> that is distinct from free-living cells. This result suggested an intricate association between extracellular matrix expression and hyphae colonization. In accordance, deletion <em>epsD</em>, <em>tasA, or</em> both <em>epsD</em> and <em>tasA</em> genes of <em>B. velezensis</em> diminished colonization of the <em>T</em>. <em>guizhouense</em> hyphae. The insights from our study demonstrate that soil BFIs are more complex than we understood, potentially involving both competition and cooperation. These intricate biofilm-mediated BFI dynamics might contribute to the remarkable diversity observed within soil microbiota, providing a fresh perspective for further exploration of BFIs in the plant rhizosphere.</div></div>\",\"PeriodicalId\":55844,\"journal\":{\"name\":\"Biofilm\",\"volume\":\"8 \",\"pages\":\"Article 100239\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofilm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590207524000649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilm","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590207524000649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
细菌-真菌相互作用(BFIs)在生态系统动态中非常重要,尤其是在土壤根圈中。芽孢杆菌(Bacillus velezensis SQR9)和贵州毛霉(Trichoderma guizhouense NJAU 4742)因其在促进植物生长和保护宿主免受病原体侵害方面的作用而备受关注。在本研究中,我们利用这两种模式微生物来研究 BFIs。我们首先证明,虽然 B. velezensis 和 T. guizhouense 共同接种能促进番茄生长,但这两种微生物在琼脂凝固培养基上却表现出相互拮抗的作用。为了解决这一矛盾,我们开发了一种接种方法,允许 B. velezensis 在 T. guizhouense菌丝上定植,并进行了转录组分析。在真菌菌丝的定殖过程中,B. velezensis SQR9 会上调生物膜相关基因(如 eps、tasA 和 bslA)的表达,这与自由生活的细胞不同。这一结果表明,细胞外基质的表达与菌丝的定殖之间存在着错综复杂的联系。因此,删除 B. velezensis 的 epsD、tasA 或 epsD 和 tasA 基因都会减少 T. guizhouense 菌丝的定殖。我们的研究结果表明,土壤中的生物膜比我们所理解的要复杂得多,可能同时涉及竞争与合作。这些错综复杂的生物膜介导的 BFI 动态可能有助于在土壤微生物群中观察到非凡的多样性,为进一步探索植物根瘤层中的 BFI 提供了一个全新的视角。
Bridging the Gap: Biofilm-mediated establishment of Bacillus velezensis on Trichoderma guizhouense mycelia
Bacterial-fungal interactions (BFIs) are important in ecosystem dynamics, especially within the soil rhizosphere. The bacterium Bacillus velezensis SQR9 and the fungus Trichoderma guizhouense NJAU 4742 have gathered considerable attention due to their roles in promoting plant growth and protecting their host against pathogens. In this study, we utilized these two model microorganisms to investigate BFIs. We firstly demonstrate that while co-inoculation of B. velezensis and T. guizhouense could promote tomato growth, these two microorganisms display mutual antagonism on agar solidified medium. To resolve this contradiction, we developed an inoculation method, that allows B. velezensis colonization of T. guizhouense hyphae and performed a transcriptome analysis. During colonization of the fungal hyphae, B. velezensis SQR9 upregulates expression of biofilm related genes (e.g. eps, tasA, and bslA) that is distinct from free-living cells. This result suggested an intricate association between extracellular matrix expression and hyphae colonization. In accordance, deletion epsD, tasA, or both epsD and tasA genes of B. velezensis diminished colonization of the T. guizhouense hyphae. The insights from our study demonstrate that soil BFIs are more complex than we understood, potentially involving both competition and cooperation. These intricate biofilm-mediated BFI dynamics might contribute to the remarkable diversity observed within soil microbiota, providing a fresh perspective for further exploration of BFIs in the plant rhizosphere.