{"title":"梳状图和太阳图的拉姆齐数和加莱-拉姆齐数","authors":"Xiao Xu , Meiqin Wei , Hong-Jian Lai , Yaping Mao","doi":"10.1016/j.dam.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>Given two graphs <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span>, the <em>Ramsey number</em> <span><math><mrow><mo>R</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is defined as the minimum number of vertices <span><math><mi>n</mi></math></span> such that every <span><math><mrow><mo>{</mo><mi>r</mi><mi>e</mi><mi>d</mi><mo>,</mo><mi>b</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo>}</mo></mrow></math></span>-edge-coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> contains either a red copy of <span><math><mi>G</mi></math></span> or a blue copy of <span><math><mi>H</mi></math></span>. If <span><math><mrow><mi>G</mi><mo>≅</mo><mi>H</mi></mrow></math></span>, then we write <span><math><mrow><mo>R</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for short. For any positive integer <span><math><mi>k</mi></math></span>, the Gallai–Ramsey number <span><math><mrow><msub><mrow><mo>gr</mo></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>:</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the minimum number of vertices <span><math><mi>n</mi></math></span> such that any exact <span><math><mi>k</mi></math></span>-edge coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> contains either a rainbow copy of <span><math><mi>G</mi></math></span> or a monochromatic copy of <span><math><mi>H</mi></math></span>. In this paper, we give exact values or upper and lower bounds for Ramsey numbers <span><math><mrow><mo>R</mo><mrow><mo>(</mo><mi>C</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mo>R</mo><mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mo>R</mo><mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><mi>C</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and Gallai–Ramsey numbers <span><math><mrow><msub><mrow><mo>gr</mo></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>:</mo><mi>C</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mo>gr</mo></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>:</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>C</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> are the comb and sun graphs, respectively.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"362 ","pages":"Pages 131-145"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ramsey and Gallai–Ramsey numbers for comb and sun graphs\",\"authors\":\"Xiao Xu , Meiqin Wei , Hong-Jian Lai , Yaping Mao\",\"doi\":\"10.1016/j.dam.2024.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given two graphs <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span>, the <em>Ramsey number</em> <span><math><mrow><mo>R</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is defined as the minimum number of vertices <span><math><mi>n</mi></math></span> such that every <span><math><mrow><mo>{</mo><mi>r</mi><mi>e</mi><mi>d</mi><mo>,</mo><mi>b</mi><mi>l</mi><mi>u</mi><mi>e</mi><mo>}</mo></mrow></math></span>-edge-coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> contains either a red copy of <span><math><mi>G</mi></math></span> or a blue copy of <span><math><mi>H</mi></math></span>. If <span><math><mrow><mi>G</mi><mo>≅</mo><mi>H</mi></mrow></math></span>, then we write <span><math><mrow><mo>R</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for short. For any positive integer <span><math><mi>k</mi></math></span>, the Gallai–Ramsey number <span><math><mrow><msub><mrow><mo>gr</mo></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>:</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the minimum number of vertices <span><math><mi>n</mi></math></span> such that any exact <span><math><mi>k</mi></math></span>-edge coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> contains either a rainbow copy of <span><math><mi>G</mi></math></span> or a monochromatic copy of <span><math><mi>H</mi></math></span>. In this paper, we give exact values or upper and lower bounds for Ramsey numbers <span><math><mrow><mo>R</mo><mrow><mo>(</mo><mi>C</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mo>R</mo><mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mo>R</mo><mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><mi>C</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and Gallai–Ramsey numbers <span><math><mrow><msub><mrow><mo>gr</mo></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>:</mo><mi>C</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mo>gr</mo></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>:</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>C</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> are the comb and sun graphs, respectively.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"362 \",\"pages\":\"Pages 131-145\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004700\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004700","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
给定两个图 G 和 H,拉姆齐数 R(G,H)的定义是:Kn 的每个{红、蓝}边着色包含 G 的红色副本或 H 的蓝色副本的顶点 n 的最小数目。如果 G≅H,则我们简称 R(G)。对于任意正整数 k,Gallai-Ramsey 数 grk(G:H)是这样的最小顶点数 n:Kn 的任意精确 k 边着色要么包含 G 的彩虹副本,要么包含 H 的单色副本。本文给出了拉姆齐数 R(Cbn)、R(Sm)、R(Sm,Cbn)和伽来-拉姆齐数 grk(K1,3:Cbn)、grk(K1,3:Sm)的精确值或上下限,其中 Cbn 和 Sm 分别是梳状图和太阳图。
Ramsey and Gallai–Ramsey numbers for comb and sun graphs
Given two graphs and , the Ramsey number is defined as the minimum number of vertices such that every -edge-coloring of contains either a red copy of or a blue copy of . If , then we write for short. For any positive integer , the Gallai–Ramsey number is the minimum number of vertices such that any exact -edge coloring of contains either a rainbow copy of or a monochromatic copy of . In this paper, we give exact values or upper and lower bounds for Ramsey numbers , , and Gallai–Ramsey numbers , , where and are the comb and sun graphs, respectively.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.