监测和量化鱼群洄游的机器视觉方法

IF 7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Feng Lin , Jicheng Zhu , Aiju You , Lei Hua
{"title":"监测和量化鱼群洄游的机器视觉方法","authors":"Feng Lin ,&nbsp;Jicheng Zhu ,&nbsp;Aiju You ,&nbsp;Lei Hua","doi":"10.1016/j.ecolind.2024.112769","DOIUrl":null,"url":null,"abstract":"<div><div>The precise monitoring and quantification of fish migration are crucial for enhancing agricultural productivity and promoting environmental conservation. However, conducting these tasks in natural environments presents challenges due to the subtle characteristics of fish and the inherent complexities in detection. This study addresses these challenges by introducing DVE-YOLO (Dynamic Vision Enhanced YOLO), a novel framework based on the YOLOv8 architecture, complemented by a tailored sample allocation strategy and a dedicated loss function. Operating on dual-frame input, DVE-YOLO integrates deep features from consecutive images to create composite anchor boxes from adjacent frames. This design enables DVE-YOLO to capture dynamic object features, reveal correlations of detected objects across frames, and facilitate efficient tracking and detection. Furthermore, this research proposes an innovative method for identifying fish migration through fish counting, documenting both the migration area and the duration of fish presence for subsequent analysis. Evaluation on an extensive fish migration dataset demonstrates that DVE-YOLO outperforms YOLOv8 and other mainstream detection algorithms, showcasing superior detection accuracy with higher <span><math><msub><mrow><mtext>AP</mtext></mrow><mrow><mn>50</mn></mrow></msub></math></span> and <span><math><msub><mrow><mtext>AP</mtext></mrow><mrow><mn>50</mn><mo>−</mo><mn>95</mn></mrow></msub></math></span> metrics. In terms of counting accuracy, DVE-YOLO achieves a lower Mean Squared Error (MSE) compared to YOLOv8+BoTSORT and YOLOv8+ByteTrack, indicating improved counting performance. Additionally, DVE-YOLO exhibits enhanced precision in identifying fish migration in contrast to YOLOv8+BoTSORT and YOLOv8+ByteTrack. Ultimately, these machine learning methods holds promising prospects for ecological applications.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112769"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine vision approach for monitoring and quantifying fish school migration\",\"authors\":\"Feng Lin ,&nbsp;Jicheng Zhu ,&nbsp;Aiju You ,&nbsp;Lei Hua\",\"doi\":\"10.1016/j.ecolind.2024.112769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The precise monitoring and quantification of fish migration are crucial for enhancing agricultural productivity and promoting environmental conservation. However, conducting these tasks in natural environments presents challenges due to the subtle characteristics of fish and the inherent complexities in detection. This study addresses these challenges by introducing DVE-YOLO (Dynamic Vision Enhanced YOLO), a novel framework based on the YOLOv8 architecture, complemented by a tailored sample allocation strategy and a dedicated loss function. Operating on dual-frame input, DVE-YOLO integrates deep features from consecutive images to create composite anchor boxes from adjacent frames. This design enables DVE-YOLO to capture dynamic object features, reveal correlations of detected objects across frames, and facilitate efficient tracking and detection. Furthermore, this research proposes an innovative method for identifying fish migration through fish counting, documenting both the migration area and the duration of fish presence for subsequent analysis. Evaluation on an extensive fish migration dataset demonstrates that DVE-YOLO outperforms YOLOv8 and other mainstream detection algorithms, showcasing superior detection accuracy with higher <span><math><msub><mrow><mtext>AP</mtext></mrow><mrow><mn>50</mn></mrow></msub></math></span> and <span><math><msub><mrow><mtext>AP</mtext></mrow><mrow><mn>50</mn><mo>−</mo><mn>95</mn></mrow></msub></math></span> metrics. In terms of counting accuracy, DVE-YOLO achieves a lower Mean Squared Error (MSE) compared to YOLOv8+BoTSORT and YOLOv8+ByteTrack, indicating improved counting performance. Additionally, DVE-YOLO exhibits enhanced precision in identifying fish migration in contrast to YOLOv8+BoTSORT and YOLOv8+ByteTrack. Ultimately, these machine learning methods holds promising prospects for ecological applications.</div></div>\",\"PeriodicalId\":11459,\"journal\":{\"name\":\"Ecological Indicators\",\"volume\":\"169 \",\"pages\":\"Article 112769\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Indicators\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1470160X24012263\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24012263","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

精确监测和量化鱼类洄游对提高农业生产力和促进环境保护至关重要。然而,由于鱼类的微妙特性和检测的内在复杂性,在自然环境中执行这些任务面临着挑战。本研究通过引入 DVE-YOLO(动态视觉增强 YOLO)来应对这些挑战,DVE-YOLO 是一个基于 YOLOv8 架构的新型框架,并辅以量身定制的样本分配策略和专用损失函数。DVE-YOLO 在双帧输入上运行时,会整合连续图像中的深度特征,以创建相邻帧的复合锚点框。这种设计使 DVE-YOLO 能够捕捉动态物体特征,揭示跨帧检测物体的相关性,并促进高效跟踪和检测。此外,这项研究还提出了一种通过鱼群计数来识别鱼群洄游的创新方法,既记录了鱼群洄游的区域,也记录了鱼群出现的持续时间,以便进行后续分析。在广泛的鱼类洄游数据集上进行的评估表明,DVE-YOLO 优于 YOLOv8 和其他主流检测算法,以更高的 AP50 和 AP50-95 指标展示了卓越的检测精度。在计数精度方面,与YOLOv8+BoTSORT和YOLOv8+ByteTrack相比,DVE-YOLO实现了更低的平均平方误差(MSE),表明计数性能得到了提高。此外,与 YOLOv8+BoTSORT 和 YOLOv8+ByteTrack 相比,DVE-YOLO 在识别鱼类洄游方面表现出更高的精度。最终,这些机器学习方法在生态学应用方面前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine vision approach for monitoring and quantifying fish school migration
The precise monitoring and quantification of fish migration are crucial for enhancing agricultural productivity and promoting environmental conservation. However, conducting these tasks in natural environments presents challenges due to the subtle characteristics of fish and the inherent complexities in detection. This study addresses these challenges by introducing DVE-YOLO (Dynamic Vision Enhanced YOLO), a novel framework based on the YOLOv8 architecture, complemented by a tailored sample allocation strategy and a dedicated loss function. Operating on dual-frame input, DVE-YOLO integrates deep features from consecutive images to create composite anchor boxes from adjacent frames. This design enables DVE-YOLO to capture dynamic object features, reveal correlations of detected objects across frames, and facilitate efficient tracking and detection. Furthermore, this research proposes an innovative method for identifying fish migration through fish counting, documenting both the migration area and the duration of fish presence for subsequent analysis. Evaluation on an extensive fish migration dataset demonstrates that DVE-YOLO outperforms YOLOv8 and other mainstream detection algorithms, showcasing superior detection accuracy with higher AP50 and AP5095 metrics. In terms of counting accuracy, DVE-YOLO achieves a lower Mean Squared Error (MSE) compared to YOLOv8+BoTSORT and YOLOv8+ByteTrack, indicating improved counting performance. Additionally, DVE-YOLO exhibits enhanced precision in identifying fish migration in contrast to YOLOv8+BoTSORT and YOLOv8+ByteTrack. Ultimately, these machine learning methods holds promising prospects for ecological applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Indicators
Ecological Indicators 环境科学-环境科学
CiteScore
11.80
自引率
8.70%
发文量
1163
审稿时长
78 days
期刊介绍: The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published. • All aspects of ecological and environmental indicators and indices. • New indicators, and new approaches and methods for indicator development, testing and use. • Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources. • Analysis and research of resource, system- and scale-specific indicators. • Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs. • How research indicators can be transformed into direct application for management purposes. • Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators. • Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信