{"title":"超滤波器上的鲁丁-基斯勒前序和皮克斯利-罗伊空间","authors":"Masami Sakai","doi":"10.1016/j.topol.2024.109136","DOIUrl":null,"url":null,"abstract":"<div><div>For a <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-space <em>X</em>, we denote by <span><math><mi>P</mi><mi>R</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> the Pixley-Roy space over <em>X</em>. For <span><math><mi>p</mi><mo>∈</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, let <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>p</mi><mo>}</mo><mo>∪</mo><mi>ω</mi></math></span> be the subspace of the Stone-Čech compactification <em>βω</em> of the discrete space <em>ω</em>. Motivated by Gul'ko's theorem (<span><span>Theorem 1.1</span></span>), we show: (1) <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> are homeomorphic if and only if <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are homeomorphic (i.e., <em>p</em> and <em>q</em> are type-equivalent), (2) if <em>q</em> is selective and <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> can be embedded into <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>, then <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are homeomorphic, (3) if <em>p</em> is selective, then <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> contains copies of some <span><math><msub><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>(</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>)</mo></math></span> which are pairwise non-homeomorphic, and (4) <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo><mo>,</mo><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⊕</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⁎</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> are pairwise non-homeomorphic, where <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⁎</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the quotient space obtained by identifying the limit points of the topological sum <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⊕</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"359 ","pages":"Article 109136"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Rudin-Kiesler pre-order and the Pixley-Roy spaces over ultrafilters\",\"authors\":\"Masami Sakai\",\"doi\":\"10.1016/j.topol.2024.109136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-space <em>X</em>, we denote by <span><math><mi>P</mi><mi>R</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> the Pixley-Roy space over <em>X</em>. For <span><math><mi>p</mi><mo>∈</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, let <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>p</mi><mo>}</mo><mo>∪</mo><mi>ω</mi></math></span> be the subspace of the Stone-Čech compactification <em>βω</em> of the discrete space <em>ω</em>. Motivated by Gul'ko's theorem (<span><span>Theorem 1.1</span></span>), we show: (1) <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> are homeomorphic if and only if <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are homeomorphic (i.e., <em>p</em> and <em>q</em> are type-equivalent), (2) if <em>q</em> is selective and <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> can be embedded into <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>, then <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are homeomorphic, (3) if <em>p</em> is selective, then <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> contains copies of some <span><math><msub><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>(</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>)</mo></math></span> which are pairwise non-homeomorphic, and (4) <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo><mo>,</mo><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⊕</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mi>P</mi><mi>R</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⁎</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> are pairwise non-homeomorphic, where <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⁎</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the quotient space obtained by identifying the limit points of the topological sum <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⊕</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"359 \",\"pages\":\"Article 109136\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124003213\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124003213","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Rudin-Kiesler pre-order and the Pixley-Roy spaces over ultrafilters
For a -space X, we denote by the Pixley-Roy space over X. For , let be the subspace of the Stone-Čech compactification βω of the discrete space ω. Motivated by Gul'ko's theorem (Theorem 1.1), we show: (1) and are homeomorphic if and only if and are homeomorphic (i.e., p and q are type-equivalent), (2) if q is selective and can be embedded into , then and are homeomorphic, (3) if p is selective, then contains copies of some which are pairwise non-homeomorphic, and (4) and are pairwise non-homeomorphic, where is the quotient space obtained by identifying the limit points of the topological sum .
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.