数图超等域性的支配对度和的新条件

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Changchang Dong , Jixiang Meng , Juan Liu
{"title":"数图超等域性的支配对度和的新条件","authors":"Changchang Dong ,&nbsp;Jixiang Meng ,&nbsp;Juan Liu","doi":"10.1016/j.dam.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>A digraph <span><math><mi>D</mi></math></span> is supereulerian if <span><math><mi>D</mi></math></span> contains a spanning Eulerian subdigraph. For any two vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi></mrow></math></span> in a digraph <span><math><mi>D</mi></math></span>, if <span><math><mrow><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>∈</mo><mi>A</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for some <span><math><mrow><mi>w</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, then we call the pair <span><math><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></math></span> dominating; if <span><math><mrow><mrow><mo>(</mo><mi>w</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mi>w</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>∈</mo><mi>A</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for some <span><math><mrow><mi>w</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, then we call the pair <span><math><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></math></span> dominated. In 2015, Bang–Jensen and Maddaloni (2015) proved that if a strong digraph <span><math><mi>D</mi></math></span> with <span><math><mi>n</mi></math></span> vertices satisfies <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span> for any pair of nonadjacent vertices <span><math><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></math></span> of <span><math><mi>D</mi></math></span>, then <span><math><mi>D</mi></math></span> is supereulerian. In this paper, we study degree sum conditions only for any pair of dominated or dominating nonadjacent vertices to assure the digraph to be supereulerian, which imply the above-mentioned result.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"362 ","pages":"Pages 124-130"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new condition on dominated pair degree sum for a digraph to be supereulerian\",\"authors\":\"Changchang Dong ,&nbsp;Jixiang Meng ,&nbsp;Juan Liu\",\"doi\":\"10.1016/j.dam.2024.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A digraph <span><math><mi>D</mi></math></span> is supereulerian if <span><math><mi>D</mi></math></span> contains a spanning Eulerian subdigraph. For any two vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi></mrow></math></span> in a digraph <span><math><mi>D</mi></math></span>, if <span><math><mrow><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>∈</mo><mi>A</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for some <span><math><mrow><mi>w</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, then we call the pair <span><math><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></math></span> dominating; if <span><math><mrow><mrow><mo>(</mo><mi>w</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mi>w</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>∈</mo><mi>A</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for some <span><math><mrow><mi>w</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, then we call the pair <span><math><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></math></span> dominated. In 2015, Bang–Jensen and Maddaloni (2015) proved that if a strong digraph <span><math><mi>D</mi></math></span> with <span><math><mi>n</mi></math></span> vertices satisfies <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span> for any pair of nonadjacent vertices <span><math><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></math></span> of <span><math><mi>D</mi></math></span>, then <span><math><mi>D</mi></math></span> is supereulerian. In this paper, we study degree sum conditions only for any pair of dominated or dominating nonadjacent vertices to assure the digraph to be supereulerian, which imply the above-mentioned result.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"362 \",\"pages\":\"Pages 124-130\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2400475X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2400475X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

如果一个数图 D 包含一个跨欧拉子数图,那么这个数图 D 就是超欧拉数图。对于一个数图 D 中的任意两个顶点 u、v,如果对于某个 w∈V(D),(u,w),(v,w)∈A(D),那么我们称这一对 {u,v} 为支配;如果对于某个 w∈V(D),(w,u),(w,v)∈A(D),那么我们称这一对 {u,v} 为支配。2015 年,Bang-Jensen 和 Maddaloni(2015)证明,如果对 D 的任意一对非相邻顶点 {u,v} 而言,具有 n 个顶点的强图谱 D 满足 d(u)+d(v)≥2n-3 ,那么 D 是超规则的。在本文中,我们只研究任意一对被支配或支配的非相邻顶点的度和条件,以确保数图是超等域的,这意味着上述结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new condition on dominated pair degree sum for a digraph to be supereulerian
A digraph D is supereulerian if D contains a spanning Eulerian subdigraph. For any two vertices u,v in a digraph D, if (u,w),(v,w)A(D) for some wV(D), then we call the pair {u,v} dominating; if (w,u),(w,v)A(D) for some wV(D), then we call the pair {u,v} dominated. In 2015, Bang–Jensen and Maddaloni (2015) proved that if a strong digraph D with n vertices satisfies d(u)+d(v)2n3 for any pair of nonadjacent vertices {u,v} of D, then D is supereulerian. In this paper, we study degree sum conditions only for any pair of dominated or dominating nonadjacent vertices to assure the digraph to be supereulerian, which imply the above-mentioned result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信