{"title":"数图超等域性的支配对度和的新条件","authors":"Changchang Dong , Jixiang Meng , Juan Liu","doi":"10.1016/j.dam.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>A digraph <span><math><mi>D</mi></math></span> is supereulerian if <span><math><mi>D</mi></math></span> contains a spanning Eulerian subdigraph. For any two vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi></mrow></math></span> in a digraph <span><math><mi>D</mi></math></span>, if <span><math><mrow><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>∈</mo><mi>A</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for some <span><math><mrow><mi>w</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, then we call the pair <span><math><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></math></span> dominating; if <span><math><mrow><mrow><mo>(</mo><mi>w</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mi>w</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>∈</mo><mi>A</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for some <span><math><mrow><mi>w</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, then we call the pair <span><math><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></math></span> dominated. In 2015, Bang–Jensen and Maddaloni (2015) proved that if a strong digraph <span><math><mi>D</mi></math></span> with <span><math><mi>n</mi></math></span> vertices satisfies <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span> for any pair of nonadjacent vertices <span><math><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></math></span> of <span><math><mi>D</mi></math></span>, then <span><math><mi>D</mi></math></span> is supereulerian. In this paper, we study degree sum conditions only for any pair of dominated or dominating nonadjacent vertices to assure the digraph to be supereulerian, which imply the above-mentioned result.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"362 ","pages":"Pages 124-130"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new condition on dominated pair degree sum for a digraph to be supereulerian\",\"authors\":\"Changchang Dong , Jixiang Meng , Juan Liu\",\"doi\":\"10.1016/j.dam.2024.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A digraph <span><math><mi>D</mi></math></span> is supereulerian if <span><math><mi>D</mi></math></span> contains a spanning Eulerian subdigraph. For any two vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi></mrow></math></span> in a digraph <span><math><mi>D</mi></math></span>, if <span><math><mrow><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>∈</mo><mi>A</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for some <span><math><mrow><mi>w</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, then we call the pair <span><math><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></math></span> dominating; if <span><math><mrow><mrow><mo>(</mo><mi>w</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mi>w</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>∈</mo><mi>A</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for some <span><math><mrow><mi>w</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, then we call the pair <span><math><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></math></span> dominated. In 2015, Bang–Jensen and Maddaloni (2015) proved that if a strong digraph <span><math><mi>D</mi></math></span> with <span><math><mi>n</mi></math></span> vertices satisfies <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span> for any pair of nonadjacent vertices <span><math><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></math></span> of <span><math><mi>D</mi></math></span>, then <span><math><mi>D</mi></math></span> is supereulerian. In this paper, we study degree sum conditions only for any pair of dominated or dominating nonadjacent vertices to assure the digraph to be supereulerian, which imply the above-mentioned result.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"362 \",\"pages\":\"Pages 124-130\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2400475X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2400475X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
如果一个数图 D 包含一个跨欧拉子数图,那么这个数图 D 就是超欧拉数图。对于一个数图 D 中的任意两个顶点 u、v,如果对于某个 w∈V(D),(u,w),(v,w)∈A(D),那么我们称这一对 {u,v} 为支配;如果对于某个 w∈V(D),(w,u),(w,v)∈A(D),那么我们称这一对 {u,v} 为支配。2015 年,Bang-Jensen 和 Maddaloni(2015)证明,如果对 D 的任意一对非相邻顶点 {u,v} 而言,具有 n 个顶点的强图谱 D 满足 d(u)+d(v)≥2n-3 ,那么 D 是超规则的。在本文中,我们只研究任意一对被支配或支配的非相邻顶点的度和条件,以确保数图是超等域的,这意味着上述结果。
A new condition on dominated pair degree sum for a digraph to be supereulerian
A digraph is supereulerian if contains a spanning Eulerian subdigraph. For any two vertices in a digraph , if for some , then we call the pair dominating; if for some , then we call the pair dominated. In 2015, Bang–Jensen and Maddaloni (2015) proved that if a strong digraph with vertices satisfies for any pair of nonadjacent vertices of , then is supereulerian. In this paper, we study degree sum conditions only for any pair of dominated or dominating nonadjacent vertices to assure the digraph to be supereulerian, which imply the above-mentioned result.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.