{"title":"神经元周围网络对压力、疼痛和酒精相关行为的调节作用","authors":"Jhoan S. Aguilar , Amy W. Lasek","doi":"10.1016/j.ynstr.2024.100692","DOIUrl":null,"url":null,"abstract":"<div><div>Perineuronal nets (PNNs) are a special form of central nervous system extracellular matrix enriched in hyaluronan, chondroitin sulfate proteoglycans, tenascins, and link proteins that regulate synaptic plasticity. Most PNNs in the brain surround parvalbumin-expressing inhibitory interneurons, which tightly regulate excitatory/inhibitory balance and brain activity associated with optimal cognitive functioning. Alterations in PNNs have been observed in neurological diseases and psychiatric disorders, suggesting that they may be key contributors to the neuropathological progression and behavioral changes in these diseases. Alcohol use disorder (AUD), major depressive disorder (MDD), and chronic pain are highly comorbid conditions, and changes in PNNs have been observed in animal models of these disorders, as well as postmortem tissue from individuals diagnosed with AUD and MDD. This review focuses on the literature describing stress-, alcohol-, and pain-induced adaptations in PNNs, potential cellular contributors to altered PNNs, and the role of PNNs in behaviors related to these disorders. Medicines that can restore PNNs to a non-pathological state may be a novel therapeutic approach to treating chronic pain, AUD, and MDD.</div></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"33 ","pages":"Article 100692"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of stress-, pain-, and alcohol-related behaviors by perineuronal nets\",\"authors\":\"Jhoan S. Aguilar , Amy W. Lasek\",\"doi\":\"10.1016/j.ynstr.2024.100692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perineuronal nets (PNNs) are a special form of central nervous system extracellular matrix enriched in hyaluronan, chondroitin sulfate proteoglycans, tenascins, and link proteins that regulate synaptic plasticity. Most PNNs in the brain surround parvalbumin-expressing inhibitory interneurons, which tightly regulate excitatory/inhibitory balance and brain activity associated with optimal cognitive functioning. Alterations in PNNs have been observed in neurological diseases and psychiatric disorders, suggesting that they may be key contributors to the neuropathological progression and behavioral changes in these diseases. Alcohol use disorder (AUD), major depressive disorder (MDD), and chronic pain are highly comorbid conditions, and changes in PNNs have been observed in animal models of these disorders, as well as postmortem tissue from individuals diagnosed with AUD and MDD. This review focuses on the literature describing stress-, alcohol-, and pain-induced adaptations in PNNs, potential cellular contributors to altered PNNs, and the role of PNNs in behaviors related to these disorders. Medicines that can restore PNNs to a non-pathological state may be a novel therapeutic approach to treating chronic pain, AUD, and MDD.</div></div>\",\"PeriodicalId\":19125,\"journal\":{\"name\":\"Neurobiology of Stress\",\"volume\":\"33 \",\"pages\":\"Article 100692\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Stress\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352289524000882\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289524000882","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Modulation of stress-, pain-, and alcohol-related behaviors by perineuronal nets
Perineuronal nets (PNNs) are a special form of central nervous system extracellular matrix enriched in hyaluronan, chondroitin sulfate proteoglycans, tenascins, and link proteins that regulate synaptic plasticity. Most PNNs in the brain surround parvalbumin-expressing inhibitory interneurons, which tightly regulate excitatory/inhibitory balance and brain activity associated with optimal cognitive functioning. Alterations in PNNs have been observed in neurological diseases and psychiatric disorders, suggesting that they may be key contributors to the neuropathological progression and behavioral changes in these diseases. Alcohol use disorder (AUD), major depressive disorder (MDD), and chronic pain are highly comorbid conditions, and changes in PNNs have been observed in animal models of these disorders, as well as postmortem tissue from individuals diagnosed with AUD and MDD. This review focuses on the literature describing stress-, alcohol-, and pain-induced adaptations in PNNs, potential cellular contributors to altered PNNs, and the role of PNNs in behaviors related to these disorders. Medicines that can restore PNNs to a non-pathological state may be a novel therapeutic approach to treating chronic pain, AUD, and MDD.
期刊介绍:
Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal.
Basic, translational and clinical research on the following topics as they relate to stress will be covered:
Molecular substrates and cell signaling,
Genetics and epigenetics,
Stress circuitry,
Structural and physiological plasticity,
Developmental Aspects,
Laboratory models of stress,
Neuroinflammation and pathology,
Memory and Cognition,
Motivational Processes,
Fear and Anxiety,
Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse),
Neuropsychopharmacology.