{"title":"用于地球、火星和月球原位激光诱导击穿光谱的激光诱导等离子体的寿命、尺寸和发射","authors":"Fabian Seel , Susanne Schröder , Elise Clavé , Enrico Dietz , Peder Bagge Hansen , Kristin Rammelkamp , Heinz-Wilhelm Hübers","doi":"10.1016/j.icarus.2024.116376","DOIUrl":null,"url":null,"abstract":"<div><div>The spectroscopic technique of laser-induced breakdown spectroscopy (LIBS) is a powerful method to perform rapid chemical analysis of geologic samples with short measurement times and no need for sample preparation. After the ChemCam instrument aboard NASA’s MSL rover proved its suitability for space missions that explore planetary surfaces in 2012, the interest in LIBS instruments as payloads has grown and several subsequent missions have successfully used this technique since. The characteristics of a LIBS plasma depend on experimental and environmental parameters as well as on sample properties, including atmospheric conditions, laser irradiance and sample lithology. Consequently, LIBS instruments need to be designed and optimized specifically for each use case to maximize their science output. To aid in the development of new LIBS instruments for space exploration, we investigate the influence of atmospheric conditions, laser irradiance and sample lithology on the lifetime, size and emission of laser-induced plasmas. In our measurements, we use a plasma imaging setup with high temporal resolution of down to 2<!--> <!-->ns to investigate the evolution of the plasma from its ignition to its decay. We present a comparable data set recorded at terrestrial, Martian and airless atmospheric conditions, covering irradiances between 0.79<!--> <!-->GW/mmˆ2 and 1.43<!--> <!-->GW/mmˆ2 and samples with diverse properties, namely basalt and soapstone, as well as the lunar regolith simulants LHS-1 and LMS-1. Our measurements show the strong influence of atmospheric conditions on the plasma size and emission, while the lithologies and laser irradiances covered in this work play a minor role. This shows that instruments designed to work at certain atmospheric conditions can be used for a range of laser parameters and sample properties. Furthermore, we demonstrate that the decay of the plasma emission and the expansion of the plasma plume parallel to the sample surface can be described well by a power law and a drag model, respectively.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"427 ","pages":"Article 116376"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifetime, size and emission of laser-induced plasmas for in-situ laser-induced breakdown spectroscopy on Earth, Mars and Moon\",\"authors\":\"Fabian Seel , Susanne Schröder , Elise Clavé , Enrico Dietz , Peder Bagge Hansen , Kristin Rammelkamp , Heinz-Wilhelm Hübers\",\"doi\":\"10.1016/j.icarus.2024.116376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The spectroscopic technique of laser-induced breakdown spectroscopy (LIBS) is a powerful method to perform rapid chemical analysis of geologic samples with short measurement times and no need for sample preparation. After the ChemCam instrument aboard NASA’s MSL rover proved its suitability for space missions that explore planetary surfaces in 2012, the interest in LIBS instruments as payloads has grown and several subsequent missions have successfully used this technique since. The characteristics of a LIBS plasma depend on experimental and environmental parameters as well as on sample properties, including atmospheric conditions, laser irradiance and sample lithology. Consequently, LIBS instruments need to be designed and optimized specifically for each use case to maximize their science output. To aid in the development of new LIBS instruments for space exploration, we investigate the influence of atmospheric conditions, laser irradiance and sample lithology on the lifetime, size and emission of laser-induced plasmas. In our measurements, we use a plasma imaging setup with high temporal resolution of down to 2<!--> <!-->ns to investigate the evolution of the plasma from its ignition to its decay. We present a comparable data set recorded at terrestrial, Martian and airless atmospheric conditions, covering irradiances between 0.79<!--> <!-->GW/mmˆ2 and 1.43<!--> <!-->GW/mmˆ2 and samples with diverse properties, namely basalt and soapstone, as well as the lunar regolith simulants LHS-1 and LMS-1. Our measurements show the strong influence of atmospheric conditions on the plasma size and emission, while the lithologies and laser irradiances covered in this work play a minor role. This shows that instruments designed to work at certain atmospheric conditions can be used for a range of laser parameters and sample properties. Furthermore, we demonstrate that the decay of the plasma emission and the expansion of the plasma plume parallel to the sample surface can be described well by a power law and a drag model, respectively.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"427 \",\"pages\":\"Article 116376\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103524004366\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524004366","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Lifetime, size and emission of laser-induced plasmas for in-situ laser-induced breakdown spectroscopy on Earth, Mars and Moon
The spectroscopic technique of laser-induced breakdown spectroscopy (LIBS) is a powerful method to perform rapid chemical analysis of geologic samples with short measurement times and no need for sample preparation. After the ChemCam instrument aboard NASA’s MSL rover proved its suitability for space missions that explore planetary surfaces in 2012, the interest in LIBS instruments as payloads has grown and several subsequent missions have successfully used this technique since. The characteristics of a LIBS plasma depend on experimental and environmental parameters as well as on sample properties, including atmospheric conditions, laser irradiance and sample lithology. Consequently, LIBS instruments need to be designed and optimized specifically for each use case to maximize their science output. To aid in the development of new LIBS instruments for space exploration, we investigate the influence of atmospheric conditions, laser irradiance and sample lithology on the lifetime, size and emission of laser-induced plasmas. In our measurements, we use a plasma imaging setup with high temporal resolution of down to 2 ns to investigate the evolution of the plasma from its ignition to its decay. We present a comparable data set recorded at terrestrial, Martian and airless atmospheric conditions, covering irradiances between 0.79 GW/mmˆ2 and 1.43 GW/mmˆ2 and samples with diverse properties, namely basalt and soapstone, as well as the lunar regolith simulants LHS-1 and LMS-1. Our measurements show the strong influence of atmospheric conditions on the plasma size and emission, while the lithologies and laser irradiances covered in this work play a minor role. This shows that instruments designed to work at certain atmospheric conditions can be used for a range of laser parameters and sample properties. Furthermore, we demonstrate that the decay of the plasma emission and the expansion of the plasma plume parallel to the sample surface can be described well by a power law and a drag model, respectively.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.