{"title":"新员工参与的软件众包平台的多目标任务分配方案","authors":"Minglan Fu, Zhijie Zhang, ZouXi Wang, Debao Chen","doi":"10.1016/j.jksuci.2024.102237","DOIUrl":null,"url":null,"abstract":"<div><div>Software crowdsourcing has become a cornerstone of the Internet economy because of its unique capacity for selecting optimal workers to complete specific tasks. However, new workers face limited task opportunities compared to experienced workers, which negatively impacts their motivation and decreases overall activity on crowdsourcing platforms. This reduced activity can harm platform reputation. To encourage the active participation of new workers, this study introduces a novel method to identify and match worker–task preferences. Our approach categorizes preferred tasks based on golden tasks, historical data, and worker interests. We then present the Multi-Objective Worker–Task Recommendation (MOWTR) algorithm, built upon the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). The MOWTR algorithm allocates tasks by considering worker preferences, salaries, and capabilities, aiming to optimize collective team performance while minimizing team costs, especially for new workers. New crossover and two-stage mutation operators are incorporated to increase algorithm efficiency. Experimental evaluations on four real and synthetic datasets demonstrate that MOWTR outperforms four advanced baseline methods, confirming its effectiveness.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 10","pages":"Article 102237"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The multi-objective task assignment scheme for software crowdsourcing platforms involving new workers\",\"authors\":\"Minglan Fu, Zhijie Zhang, ZouXi Wang, Debao Chen\",\"doi\":\"10.1016/j.jksuci.2024.102237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Software crowdsourcing has become a cornerstone of the Internet economy because of its unique capacity for selecting optimal workers to complete specific tasks. However, new workers face limited task opportunities compared to experienced workers, which negatively impacts their motivation and decreases overall activity on crowdsourcing platforms. This reduced activity can harm platform reputation. To encourage the active participation of new workers, this study introduces a novel method to identify and match worker–task preferences. Our approach categorizes preferred tasks based on golden tasks, historical data, and worker interests. We then present the Multi-Objective Worker–Task Recommendation (MOWTR) algorithm, built upon the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). The MOWTR algorithm allocates tasks by considering worker preferences, salaries, and capabilities, aiming to optimize collective team performance while minimizing team costs, especially for new workers. New crossover and two-stage mutation operators are incorporated to increase algorithm efficiency. Experimental evaluations on four real and synthetic datasets demonstrate that MOWTR outperforms four advanced baseline methods, confirming its effectiveness.</div></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":\"36 10\",\"pages\":\"Article 102237\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824003264\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824003264","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
The multi-objective task assignment scheme for software crowdsourcing platforms involving new workers
Software crowdsourcing has become a cornerstone of the Internet economy because of its unique capacity for selecting optimal workers to complete specific tasks. However, new workers face limited task opportunities compared to experienced workers, which negatively impacts their motivation and decreases overall activity on crowdsourcing platforms. This reduced activity can harm platform reputation. To encourage the active participation of new workers, this study introduces a novel method to identify and match worker–task preferences. Our approach categorizes preferred tasks based on golden tasks, historical data, and worker interests. We then present the Multi-Objective Worker–Task Recommendation (MOWTR) algorithm, built upon the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). The MOWTR algorithm allocates tasks by considering worker preferences, salaries, and capabilities, aiming to optimize collective team performance while minimizing team costs, especially for new workers. New crossover and two-stage mutation operators are incorporated to increase algorithm efficiency. Experimental evaluations on four real and synthetic datasets demonstrate that MOWTR outperforms four advanced baseline methods, confirming its effectiveness.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.