论与图相关的李代数同调

IF 0.7 2区 数学 Q2 MATHEMATICS
Marco Aldi , Andrew Butler , Jordan Gardiner , Daniele Grandini , Monica Lichtenwalner , Kevin Pan
{"title":"论与图相关的李代数同调","authors":"Marco Aldi ,&nbsp;Andrew Butler ,&nbsp;Jordan Gardiner ,&nbsp;Daniele Grandini ,&nbsp;Monica Lichtenwalner ,&nbsp;Kevin Pan","doi":"10.1016/j.jpaa.2024.107838","DOIUrl":null,"url":null,"abstract":"<div><div>We describe a canonical decomposition of the cohomology of the Dani-Mainkar 2-step nilpotent Lie algebras associated with graphs. As applications, we obtain explicit formulas for the third cohomology of any Dani-Mainkar Lie algebra and for the cohomology in all degrees of Lie algebras associated with arbitrary star graphs. We also describe a procedure to reduce the calculation of the cohomology of solvable Lie algebras associated with graphs through the Grantcharov-Grantcharov-Iliev construction to the cohomology of Dani-Mainkar Lie algebras.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107838"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cohomology of Lie algebras associated with graphs\",\"authors\":\"Marco Aldi ,&nbsp;Andrew Butler ,&nbsp;Jordan Gardiner ,&nbsp;Daniele Grandini ,&nbsp;Monica Lichtenwalner ,&nbsp;Kevin Pan\",\"doi\":\"10.1016/j.jpaa.2024.107838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We describe a canonical decomposition of the cohomology of the Dani-Mainkar 2-step nilpotent Lie algebras associated with graphs. As applications, we obtain explicit formulas for the third cohomology of any Dani-Mainkar Lie algebra and for the cohomology in all degrees of Lie algebras associated with arbitrary star graphs. We also describe a procedure to reduce the calculation of the cohomology of solvable Lie algebras associated with graphs through the Grantcharov-Grantcharov-Iliev construction to the cohomology of Dani-Mainkar Lie algebras.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 1\",\"pages\":\"Article 107838\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002354\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002354","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了与图相关的丹尼-马恩卡 2 阶零能烈代数的同调的规范分解。作为应用,我们得到了任何 Dani-Mainkar Lie 代数的第三同调的明确公式,以及与任意星形图相关的 Lie 代数的所有度数的同调的明确公式。我们还描述了通过格兰查洛夫-格兰查洛夫-伊利耶夫构造将与图相关的可解李代数的同调计算简化为丹尼-马恩卡尔李代数的同调计算的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the cohomology of Lie algebras associated with graphs
We describe a canonical decomposition of the cohomology of the Dani-Mainkar 2-step nilpotent Lie algebras associated with graphs. As applications, we obtain explicit formulas for the third cohomology of any Dani-Mainkar Lie algebra and for the cohomology in all degrees of Lie algebras associated with arbitrary star graphs. We also describe a procedure to reduce the calculation of the cohomology of solvable Lie algebras associated with graphs through the Grantcharov-Grantcharov-Iliev construction to the cohomology of Dani-Mainkar Lie algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信