格罗登第克-泰赫穆勒群温柔版 GTˆgen 的 GT 阴影

IF 0.7 2区 数学 Q2 MATHEMATICS
Vasily A. Dolgushev , Jacob J. Guynee
{"title":"格罗登第克-泰赫穆勒群温柔版 GTˆgen 的 GT 阴影","authors":"Vasily A. Dolgushev ,&nbsp;Jacob J. Guynee","doi":"10.1016/j.jpaa.2024.107819","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> be the Artin braid group on 3 strands and <span><math><msub><mrow><mi>PB</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> be the corresponding pure braid group. In this paper, we construct the groupoid <span><math><mi>GTSh</mi></math></span> of <span><math><mi>GT</mi></math></span>-shadows for a (possibly more tractable) version <span><math><msub><mrow><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msub></math></span> of the Grothendieck-Teichmueller group <span><math><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> introduced in paper <span><span>[12]</span></span> by D. Harbater and L. Schneps. We call this group the gentle version of <span><math><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> and denote it by <span><math><msub><mrow><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>g</mi><mi>e</mi><mi>n</mi></mrow></msub></math></span>. The objects of <span><math><mi>GTSh</mi></math></span> are finite index normal subgroups <span><math><mi>N</mi></math></span> of <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> satisfying the condition <span><math><mi>N</mi><mo>≤</mo><msub><mrow><mi>PB</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>. Morphisms of <span><math><mi>GTSh</mi></math></span> are called <span><math><mi>GT</mi></math></span>-shadows and they may be thought of as approximations to elements of <span><math><msub><mrow><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>g</mi><mi>e</mi><mi>n</mi></mrow></msub></math></span>. We show how <span><math><mi>GT</mi></math></span>-shadows can be obtained from elements of <span><math><msub><mrow><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>g</mi><mi>e</mi><mi>n</mi></mrow></msub></math></span> and prove that <span><math><msub><mrow><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>g</mi><mi>e</mi><mi>n</mi></mrow></msub></math></span> is isomorphic to the limit of a certain functor defined in terms of the groupoid <span><math><mi>GTSh</mi></math></span>. Using this result, we get a criterion for identifying genuine <span><math><mi>GT</mi></math></span>-shadows.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107819"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GT-shadows for the gentle version GTˆgen of the Grothendieck-Teichmueller group\",\"authors\":\"Vasily A. Dolgushev ,&nbsp;Jacob J. Guynee\",\"doi\":\"10.1016/j.jpaa.2024.107819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> be the Artin braid group on 3 strands and <span><math><msub><mrow><mi>PB</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> be the corresponding pure braid group. In this paper, we construct the groupoid <span><math><mi>GTSh</mi></math></span> of <span><math><mi>GT</mi></math></span>-shadows for a (possibly more tractable) version <span><math><msub><mrow><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msub></math></span> of the Grothendieck-Teichmueller group <span><math><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> introduced in paper <span><span>[12]</span></span> by D. Harbater and L. Schneps. We call this group the gentle version of <span><math><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> and denote it by <span><math><msub><mrow><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>g</mi><mi>e</mi><mi>n</mi></mrow></msub></math></span>. The objects of <span><math><mi>GTSh</mi></math></span> are finite index normal subgroups <span><math><mi>N</mi></math></span> of <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> satisfying the condition <span><math><mi>N</mi><mo>≤</mo><msub><mrow><mi>PB</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>. Morphisms of <span><math><mi>GTSh</mi></math></span> are called <span><math><mi>GT</mi></math></span>-shadows and they may be thought of as approximations to elements of <span><math><msub><mrow><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>g</mi><mi>e</mi><mi>n</mi></mrow></msub></math></span>. We show how <span><math><mi>GT</mi></math></span>-shadows can be obtained from elements of <span><math><msub><mrow><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>g</mi><mi>e</mi><mi>n</mi></mrow></msub></math></span> and prove that <span><math><msub><mrow><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>g</mi><mi>e</mi><mi>n</mi></mrow></msub></math></span> is isomorphic to the limit of a certain functor defined in terms of the groupoid <span><math><mi>GTSh</mi></math></span>. Using this result, we get a criterion for identifying genuine <span><math><mi>GT</mi></math></span>-shadows.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 1\",\"pages\":\"Article 107819\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002160\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002160","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 B3 是 3 股上的阿廷辫状群,PB3 是相应的纯辫状群。在本文中,我们为 D. Harbater 和 L. Schneps 在论文[12]中介绍的格罗内迪克-泰希姆勒群 GTˆ 的一个(可能更容易理解的)版本 GTˆ0 构建了 GT 阴影的类群 GTSh。我们称这个群为 GTˆ 的温柔版本,用 GTˆgen 表示。GTSh 的对象是满足 N≤PB3 条件的 B3 的有限索引正则子群 N。GTSh 的变形被称为 GT-阴影,它们可以被看作是 GTˆgen 元素的近似。我们展示了如何从 GTˆgen 的元素中得到 GT 影,并证明 GTˆgen 与以群集 GTSh 定义的某个函子的极限同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GT-shadows for the gentle version GTˆgen of the Grothendieck-Teichmueller group
Let B3 be the Artin braid group on 3 strands and PB3 be the corresponding pure braid group. In this paper, we construct the groupoid GTSh of GT-shadows for a (possibly more tractable) version GTˆ0 of the Grothendieck-Teichmueller group GTˆ introduced in paper [12] by D. Harbater and L. Schneps. We call this group the gentle version of GTˆ and denote it by GTˆgen. The objects of GTSh are finite index normal subgroups N of B3 satisfying the condition NPB3. Morphisms of GTSh are called GT-shadows and they may be thought of as approximations to elements of GTˆgen. We show how GT-shadows can be obtained from elements of GTˆgen and prove that GTˆgen is isomorphic to the limit of a certain functor defined in terms of the groupoid GTSh. Using this result, we get a criterion for identifying genuine GT-shadows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信