Alana M. Weir , Thomas M. Wilson , Mark S. Bebbington , Craig Campbell-Smart , James H. Williams , Roger Fairclough
{"title":"量化相互依存的关键基础设施网络的系统脆弱性:火山灾害案例研究","authors":"Alana M. Weir , Thomas M. Wilson , Mark S. Bebbington , Craig Campbell-Smart , James H. Williams , Roger Fairclough","doi":"10.1016/j.ijdrr.2024.104997","DOIUrl":null,"url":null,"abstract":"<div><div>Infrastructure networks are vital for the communities and industries that rely on their continued operation. Disasters stress these complex networks and can provoke systemic disruptions that extend far beyond the spatial footprint of hazards. An enduring challenge for assessing infrastructure networks within disaster impact assessment frameworks has been to adequately quantify the high spatial interdependence of these networks, and to consider risk management interventions through time. This is of particular importance for volcanic eruptions, which can produce multiple hazards over highly variable spatiotemporal extents. In this study, we present a methodology for the quantification of systemic vulnerability of infrastructure networks, which can be coupled with physical vulnerability models for the purpose of impact assessment. The two-part methodology first quantifies the haard-agnostic criticality of infrastructural components, inclusive of interdependencies, and then incorporates representative hazard spatial footprints to derive the systemic vulnerability. We demonstrate this methodology using the case study of volcanic eruptions from Taranaki Mounga volcano, Aotearoa New Zealand, where there are many industrial sites of national importance, and a high likelihood of a complex multi-hazard volcanic eruption. We find a considerable increase in the systemic vulnerability of electricity and natural gas network components after incorporating infrastructure interdependencies, and a further increase in the systemic vulnerability of these critical components when cross-referenced with potential volcanic hazard spatial extent. The methodology of this study can be applied to other areas of interest in both its hazard-agnostic or hazard-dependent form, and the systemic vulnerability quantification should be incorporated into impact assessment frameworks.</div></div>","PeriodicalId":13915,"journal":{"name":"International journal of disaster risk reduction","volume":"114 ","pages":"Article 104997"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying systemic vulnerability of interdependent critical infrastructure networks: A case study for volcanic hazards\",\"authors\":\"Alana M. Weir , Thomas M. Wilson , Mark S. Bebbington , Craig Campbell-Smart , James H. Williams , Roger Fairclough\",\"doi\":\"10.1016/j.ijdrr.2024.104997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Infrastructure networks are vital for the communities and industries that rely on their continued operation. Disasters stress these complex networks and can provoke systemic disruptions that extend far beyond the spatial footprint of hazards. An enduring challenge for assessing infrastructure networks within disaster impact assessment frameworks has been to adequately quantify the high spatial interdependence of these networks, and to consider risk management interventions through time. This is of particular importance for volcanic eruptions, which can produce multiple hazards over highly variable spatiotemporal extents. In this study, we present a methodology for the quantification of systemic vulnerability of infrastructure networks, which can be coupled with physical vulnerability models for the purpose of impact assessment. The two-part methodology first quantifies the haard-agnostic criticality of infrastructural components, inclusive of interdependencies, and then incorporates representative hazard spatial footprints to derive the systemic vulnerability. We demonstrate this methodology using the case study of volcanic eruptions from Taranaki Mounga volcano, Aotearoa New Zealand, where there are many industrial sites of national importance, and a high likelihood of a complex multi-hazard volcanic eruption. We find a considerable increase in the systemic vulnerability of electricity and natural gas network components after incorporating infrastructure interdependencies, and a further increase in the systemic vulnerability of these critical components when cross-referenced with potential volcanic hazard spatial extent. The methodology of this study can be applied to other areas of interest in both its hazard-agnostic or hazard-dependent form, and the systemic vulnerability quantification should be incorporated into impact assessment frameworks.</div></div>\",\"PeriodicalId\":13915,\"journal\":{\"name\":\"International journal of disaster risk reduction\",\"volume\":\"114 \",\"pages\":\"Article 104997\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of disaster risk reduction\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212420924007593\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of disaster risk reduction","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212420924007593","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantifying systemic vulnerability of interdependent critical infrastructure networks: A case study for volcanic hazards
Infrastructure networks are vital for the communities and industries that rely on their continued operation. Disasters stress these complex networks and can provoke systemic disruptions that extend far beyond the spatial footprint of hazards. An enduring challenge for assessing infrastructure networks within disaster impact assessment frameworks has been to adequately quantify the high spatial interdependence of these networks, and to consider risk management interventions through time. This is of particular importance for volcanic eruptions, which can produce multiple hazards over highly variable spatiotemporal extents. In this study, we present a methodology for the quantification of systemic vulnerability of infrastructure networks, which can be coupled with physical vulnerability models for the purpose of impact assessment. The two-part methodology first quantifies the haard-agnostic criticality of infrastructural components, inclusive of interdependencies, and then incorporates representative hazard spatial footprints to derive the systemic vulnerability. We demonstrate this methodology using the case study of volcanic eruptions from Taranaki Mounga volcano, Aotearoa New Zealand, where there are many industrial sites of national importance, and a high likelihood of a complex multi-hazard volcanic eruption. We find a considerable increase in the systemic vulnerability of electricity and natural gas network components after incorporating infrastructure interdependencies, and a further increase in the systemic vulnerability of these critical components when cross-referenced with potential volcanic hazard spatial extent. The methodology of this study can be applied to other areas of interest in both its hazard-agnostic or hazard-dependent form, and the systemic vulnerability quantification should be incorporated into impact assessment frameworks.
期刊介绍:
The International Journal of Disaster Risk Reduction (IJDRR) is the journal for researchers, policymakers and practitioners across diverse disciplines: earth sciences and their implications; environmental sciences; engineering; urban studies; geography; and the social sciences. IJDRR publishes fundamental and applied research, critical reviews, policy papers and case studies with a particular focus on multi-disciplinary research that aims to reduce the impact of natural, technological, social and intentional disasters. IJDRR stimulates exchange of ideas and knowledge transfer on disaster research, mitigation, adaptation, prevention and risk reduction at all geographical scales: local, national and international.
Key topics:-
-multifaceted disaster and cascading disasters
-the development of disaster risk reduction strategies and techniques
-discussion and development of effective warning and educational systems for risk management at all levels
-disasters associated with climate change
-vulnerability analysis and vulnerability trends
-emerging risks
-resilience against disasters.
The journal particularly encourages papers that approach risk from a multi-disciplinary perspective.