边色图中彩虹小群的更多内容

IF 1 3区 数学 Q1 MATHEMATICS
Xiao-Chuan Liu , Danni Peng , Xu Yang
{"title":"边色图中彩虹小群的更多内容","authors":"Xiao-Chuan Liu ,&nbsp;Danni Peng ,&nbsp;Xu Yang","doi":"10.1016/j.ejc.2024.104088","DOIUrl":null,"url":null,"abstract":"<div><div>In an edge-colored graph <span><math><mi>G</mi></math></span>, a rainbow clique <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is a complete subgraph on <span><math><mi>k</mi></math></span> vertices in which all the edges have distinct colors. Let <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the number of edges and colors in <span><math><mi>G</mi></math></span>, respectively. In this paper, we show that for any <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, if <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>3</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mi>ɛ</mi><mo>)</mo></mrow><mfenced><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mfenced></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, then for sufficiently large <span><math><mi>n</mi></math></span>, the number of rainbow cliques <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> in <span><math><mi>G</mi></math></span> is <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</div><div>We also characterize the extremal graphs <span><math><mi>G</mi></math></span> without a rainbow clique <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, for <span><math><mrow><mi>k</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn></mrow></math></span>, when <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is maximum.</div><div>Our results not only address existing questions but also complete the findings of Ehard and Mohr (2020).</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104088"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More on rainbow cliques in edge-colored graphs\",\"authors\":\"Xiao-Chuan Liu ,&nbsp;Danni Peng ,&nbsp;Xu Yang\",\"doi\":\"10.1016/j.ejc.2024.104088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In an edge-colored graph <span><math><mi>G</mi></math></span>, a rainbow clique <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is a complete subgraph on <span><math><mi>k</mi></math></span> vertices in which all the edges have distinct colors. Let <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the number of edges and colors in <span><math><mi>G</mi></math></span>, respectively. In this paper, we show that for any <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, if <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>3</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mi>ɛ</mi><mo>)</mo></mrow><mfenced><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mfenced></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, then for sufficiently large <span><math><mi>n</mi></math></span>, the number of rainbow cliques <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> in <span><math><mi>G</mi></math></span> is <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</div><div>We also characterize the extremal graphs <span><math><mi>G</mi></math></span> without a rainbow clique <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, for <span><math><mrow><mi>k</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn></mrow></math></span>, when <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is maximum.</div><div>Our results not only address existing questions but also complete the findings of Ehard and Mohr (2020).</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"124 \",\"pages\":\"Article 104088\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001732\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001732","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在边色图 G 中,彩虹簇 Kk 是 k 个顶点上的一个完整子图,其中所有的边都有不同的颜色。设 e(G) 和 c(G) 分别为 G 中的边数和颜色数。本文将证明,对于任意ɛ>0,如果 e(G)+c(G)≥(1+k-3k-2+2ɛ)n2 且 k≥3 ,那么对于足够大的 n,G 中彩虹小群 Kk 的数目为 Ω(nk)。我们还描述了在 k=4,5 时,e(G)+c(G) 最大时没有彩虹簇 Kk 的极值图 G 的特征。我们的结果不仅解决了现有问题,还完善了 Ehard 和 Mohr (2020) 的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More on rainbow cliques in edge-colored graphs
In an edge-colored graph G, a rainbow clique Kk is a complete subgraph on k vertices in which all the edges have distinct colors. Let e(G) and c(G) be the number of edges and colors in G, respectively. In this paper, we show that for any ɛ>0, if e(G)+c(G)(1+k3k2+2ɛ)n2 and k3, then for sufficiently large n, the number of rainbow cliques Kk in G is Ω(nk).
We also characterize the extremal graphs G without a rainbow clique Kk, for k=4,5, when e(G)+c(G) is maximum.
Our results not only address existing questions but also complete the findings of Ehard and Mohr (2020).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信