基于遥感的五梁素海流域荒漠化时空变化及驱动因素研究

IF 7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Wenwen Gao , Zuoyong Huang , Xiuzhong Li , Baocun Ji , Na Li , Senyang Li , Xingyu Liu , Qingwei Zeng , Guangnian Sun , Dan Zhao
{"title":"基于遥感的五梁素海流域荒漠化时空变化及驱动因素研究","authors":"Wenwen Gao ,&nbsp;Zuoyong Huang ,&nbsp;Xiuzhong Li ,&nbsp;Baocun Ji ,&nbsp;Na Li ,&nbsp;Senyang Li ,&nbsp;Xingyu Liu ,&nbsp;Qingwei Zeng ,&nbsp;Guangnian Sun ,&nbsp;Dan Zhao","doi":"10.1016/j.ecolind.2024.112851","DOIUrl":null,"url":null,"abstract":"<div><div>Wuliangsuhai watershed is a large freshwater lake in Hulunbuir City, Inner Mongolia Autonomous Region, with important ecological, cultural and economic values. Based on the Landsat 8 OLI remote sensing images, this study used the object-oriented CART decision tree to map the land cover, the pixel dichotomy model to estimate the FVC and Albedo-NDVI formula to estimate DDI in the Wuliangsuhai watershed in 2020, 2021 and 2022. Besides, Geo-informatic tupu and geographical detector model were also used to analysis the changing patterns and drivers of desertification. The results indicated a decline in desertification in the Wuliangsuhai watershed from 2020 to 2022. The area of barren lands exhibited a 17.41% reduction with a 37.78% decline in the FVC in the no vegetation class. The area of the DDI in the no desertification level increased, while that of the extremely severe desertification level decreased. Furthermore, the geo-informatic tupu indicated that the desertification improvement area showed consistent growth during the study period. However, a considerable proportion of the grasslands (32.73%) remained degraded, and the area of FVC in the moderately dense vegetation class exhibited a notable decline (21.32%). And the area affected by severe desertification level of DDI increased. This can be attributed to a combination of climatic, ecosystem conditions and human impacts. In particular, the reduction in precipitation, coupled with the steep slopes and negative human activities, has accelerated the desertification process. Consequently, this study provides recommendations for policy makers to prioritize negative human activities and soil erosion in the Wuliangsuhai watershed.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112851"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The spatial–temporal changes and driving factors of desertification in the Wuliangsuhai watershed based on remote sensing\",\"authors\":\"Wenwen Gao ,&nbsp;Zuoyong Huang ,&nbsp;Xiuzhong Li ,&nbsp;Baocun Ji ,&nbsp;Na Li ,&nbsp;Senyang Li ,&nbsp;Xingyu Liu ,&nbsp;Qingwei Zeng ,&nbsp;Guangnian Sun ,&nbsp;Dan Zhao\",\"doi\":\"10.1016/j.ecolind.2024.112851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wuliangsuhai watershed is a large freshwater lake in Hulunbuir City, Inner Mongolia Autonomous Region, with important ecological, cultural and economic values. Based on the Landsat 8 OLI remote sensing images, this study used the object-oriented CART decision tree to map the land cover, the pixel dichotomy model to estimate the FVC and Albedo-NDVI formula to estimate DDI in the Wuliangsuhai watershed in 2020, 2021 and 2022. Besides, Geo-informatic tupu and geographical detector model were also used to analysis the changing patterns and drivers of desertification. The results indicated a decline in desertification in the Wuliangsuhai watershed from 2020 to 2022. The area of barren lands exhibited a 17.41% reduction with a 37.78% decline in the FVC in the no vegetation class. The area of the DDI in the no desertification level increased, while that of the extremely severe desertification level decreased. Furthermore, the geo-informatic tupu indicated that the desertification improvement area showed consistent growth during the study period. However, a considerable proportion of the grasslands (32.73%) remained degraded, and the area of FVC in the moderately dense vegetation class exhibited a notable decline (21.32%). And the area affected by severe desertification level of DDI increased. This can be attributed to a combination of climatic, ecosystem conditions and human impacts. In particular, the reduction in precipitation, coupled with the steep slopes and negative human activities, has accelerated the desertification process. Consequently, this study provides recommendations for policy makers to prioritize negative human activities and soil erosion in the Wuliangsuhai watershed.</div></div>\",\"PeriodicalId\":11459,\"journal\":{\"name\":\"Ecological Indicators\",\"volume\":\"169 \",\"pages\":\"Article 112851\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Indicators\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1470160X24013086\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24013086","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

乌梁素海流域是内蒙古自治区呼伦贝尔市的一个大型淡水湖,具有重要的生态、文化和经济价值。本研究基于 Landsat 8 OLI 遥感影像,采用面向对象的 CART 决策树绘制土地覆被图,采用像素二分法模型估算 FVC,采用 Albedo-NDVI 公式估算 2020 年、2021 年和 2022 年乌梁素海流域的 DDI。此外,还利用地理信息图谱和地理探测器模型分析了荒漠化的变化模式和驱动因素。结果表明,从 2020 年到 2022 年,五梁素海流域的荒漠化程度有所下降。荒芜地面积减少了 17.41%,无植被等级的 FVC 减少了 37.78%。无荒漠化等级中的 DDI 面积增加,而极严重荒漠化等级中的 DDI 面积减少。此外,地理信息图谱显示,荒漠化改善区在研究期间呈现持续增长态势。但是,仍有相当比例的草地(32.73%)退化,中度茂密植被的森林覆盖率显著下降(21.32%)。而受 DDI 严重荒漠化影响的面积有所增加。这可归因于气候、生态系统条件和人为影响的综合作用。特别是降水量的减少,加上陡峭的山坡和人类的负面活动,加速了荒漠化进程。因此,本研究为决策者提供了建议,以优先考虑五梁素海流域的负面人类活动和水土流失问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The spatial–temporal changes and driving factors of desertification in the Wuliangsuhai watershed based on remote sensing
Wuliangsuhai watershed is a large freshwater lake in Hulunbuir City, Inner Mongolia Autonomous Region, with important ecological, cultural and economic values. Based on the Landsat 8 OLI remote sensing images, this study used the object-oriented CART decision tree to map the land cover, the pixel dichotomy model to estimate the FVC and Albedo-NDVI formula to estimate DDI in the Wuliangsuhai watershed in 2020, 2021 and 2022. Besides, Geo-informatic tupu and geographical detector model were also used to analysis the changing patterns and drivers of desertification. The results indicated a decline in desertification in the Wuliangsuhai watershed from 2020 to 2022. The area of barren lands exhibited a 17.41% reduction with a 37.78% decline in the FVC in the no vegetation class. The area of the DDI in the no desertification level increased, while that of the extremely severe desertification level decreased. Furthermore, the geo-informatic tupu indicated that the desertification improvement area showed consistent growth during the study period. However, a considerable proportion of the grasslands (32.73%) remained degraded, and the area of FVC in the moderately dense vegetation class exhibited a notable decline (21.32%). And the area affected by severe desertification level of DDI increased. This can be attributed to a combination of climatic, ecosystem conditions and human impacts. In particular, the reduction in precipitation, coupled with the steep slopes and negative human activities, has accelerated the desertification process. Consequently, this study provides recommendations for policy makers to prioritize negative human activities and soil erosion in the Wuliangsuhai watershed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Indicators
Ecological Indicators 环境科学-环境科学
CiteScore
11.80
自引率
8.70%
发文量
1163
审稿时长
78 days
期刊介绍: The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published. • All aspects of ecological and environmental indicators and indices. • New indicators, and new approaches and methods for indicator development, testing and use. • Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources. • Analysis and research of resource, system- and scale-specific indicators. • Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs. • How research indicators can be transformed into direct application for management purposes. • Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators. • Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信