评估氧化石墨烯以及通过顺序还原法获得的还原氧化石墨烯的形态、结构、热、电和化学成分特性

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hülya KAFTELEN-ODABAŞI
{"title":"评估氧化石墨烯以及通过顺序还原法获得的还原氧化石墨烯的形态、结构、热、电和化学成分特性","authors":"Hülya KAFTELEN-ODABAŞI","doi":"10.1016/j.cartre.2024.100429","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the preparation and characterization of reduced graphene oxide (RGO) derived from graphene oxide (GO) using various reduction methods, including ethylene glycol (EG), hydrazine, ascorbic acid, thermal reduction, and their sequential combinations. Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), Raman spectroscopy, and X-ray Photoelectron Spectroscopy (XPS) were employed to analyze the morphological, structural, and thermal properties, as well as the composition and the functional groups of graphene oxide and its reduced forms. The highest electrical conductivity value of about 2500 S/m was obtained after the combined ascorbic acid-ethylene glycol-hydrazine treatment, which is attributed to the increase in C/O ratio determined by XPS compositional analysis and the decrease in area defects, as confirmed by Raman analysis.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"17 ","pages":"Article 100429"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of morphological, structural, thermal, electrical, and chemical composition properties of graphene oxide, and reduced graphene oxide obtained by sequential reduction methods\",\"authors\":\"Hülya KAFTELEN-ODABAŞI\",\"doi\":\"10.1016/j.cartre.2024.100429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the preparation and characterization of reduced graphene oxide (RGO) derived from graphene oxide (GO) using various reduction methods, including ethylene glycol (EG), hydrazine, ascorbic acid, thermal reduction, and their sequential combinations. Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), Raman spectroscopy, and X-ray Photoelectron Spectroscopy (XPS) were employed to analyze the morphological, structural, and thermal properties, as well as the composition and the functional groups of graphene oxide and its reduced forms. The highest electrical conductivity value of about 2500 S/m was obtained after the combined ascorbic acid-ethylene glycol-hydrazine treatment, which is attributed to the increase in C/O ratio determined by XPS compositional analysis and the decrease in area defects, as confirmed by Raman analysis.</div></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"17 \",\"pages\":\"Article 100429\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924001093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924001093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了利用各种还原方法(包括乙二醇(EG)、肼、抗坏血酸、热还原及其顺序组合)制备和表征由氧化石墨烯(GO)衍生的还原型氧化石墨烯(RGO)。利用扫描电子显微镜(SEM)、X 射线衍射(XRD)、傅立叶变换红外光谱(FTIR)、热重分析(TGA)、拉曼光谱和 X 射线光电子能谱(XPS)分析了氧化石墨烯及其还原形式的形态、结构和热性能,以及组成和官能团。经抗坏血酸-乙二醇-肼联合处理后,获得了约 2500 S/m 的最高电导率值,这归因于 XPS 成分分析确定的 C/O 比率的增加和拉曼分析证实的面积缺陷的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluation of morphological, structural, thermal, electrical, and chemical composition properties of graphene oxide, and reduced graphene oxide obtained by sequential reduction methods

Evaluation of morphological, structural, thermal, electrical, and chemical composition properties of graphene oxide, and reduced graphene oxide obtained by sequential reduction methods
This study investigates the preparation and characterization of reduced graphene oxide (RGO) derived from graphene oxide (GO) using various reduction methods, including ethylene glycol (EG), hydrazine, ascorbic acid, thermal reduction, and their sequential combinations. Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), Raman spectroscopy, and X-ray Photoelectron Spectroscopy (XPS) were employed to analyze the morphological, structural, and thermal properties, as well as the composition and the functional groups of graphene oxide and its reduced forms. The highest electrical conductivity value of about 2500 S/m was obtained after the combined ascorbic acid-ethylene glycol-hydrazine treatment, which is attributed to the increase in C/O ratio determined by XPS compositional analysis and the decrease in area defects, as confirmed by Raman analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信