促进光催化 H2 演化和 N2 固定为氨的 Bi2MoO6/g-C3N4/CNT 三元纳米复合太阳能材料

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Elnaz Fekri , Mir Saeed Seyed Dorraji , Morteza Vahedpour
{"title":"促进光催化 H2 演化和 N2 固定为氨的 Bi2MoO6/g-C3N4/CNT 三元纳米复合太阳能材料","authors":"Elnaz Fekri ,&nbsp;Mir Saeed Seyed Dorraji ,&nbsp;Morteza Vahedpour","doi":"10.1016/j.solmat.2024.113315","DOIUrl":null,"url":null,"abstract":"<div><div>The rational design of the photocatalytic system consisting of solar energy material semiconductors to convert solar energy into good chemicals or renewable fuels is an attractive strategy to achieve sustainable development. Here, hydrogen fuel is produced by using Bi<sub>2</sub>MoO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub>/CNT ternary nanocomposite solar energy material in aqueous medium and using simulated sunlight. Also, the mentioned nanocomposite shows a promising ability to produce ammonia in the water environment and the presence of nitrogen gas under ambient conditions. The presence of CNT in the nanocomposite not only increases the efficient usage of incident photons, but also effectively separates charge carriers and facilitates the transfer of electrons and their use in nitrogen fixing to ammonia. The optimized nanocomposite (Bi<sub>2</sub>MoO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub>/CNT) had significantly high photocatalytic activity, exhibiting the highest production of H<sub>2</sub> and NH<sub>3</sub> relative to Bi<sub>2</sub>MoO<sub>6</sub> and g-C<sub>3</sub>N<sub>4</sub>. Finally, a logical charge transfer mechanism was proposed for H<sub>2</sub> evolution and NH<sub>3</sub> production.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"281 ","pages":"Article 113315"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi2MoO6/g-C3N4/CNT ternary nanocomposite solar energy material for boosting photocatalytic H2 evolution and N2 fixation to ammonia\",\"authors\":\"Elnaz Fekri ,&nbsp;Mir Saeed Seyed Dorraji ,&nbsp;Morteza Vahedpour\",\"doi\":\"10.1016/j.solmat.2024.113315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rational design of the photocatalytic system consisting of solar energy material semiconductors to convert solar energy into good chemicals or renewable fuels is an attractive strategy to achieve sustainable development. Here, hydrogen fuel is produced by using Bi<sub>2</sub>MoO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub>/CNT ternary nanocomposite solar energy material in aqueous medium and using simulated sunlight. Also, the mentioned nanocomposite shows a promising ability to produce ammonia in the water environment and the presence of nitrogen gas under ambient conditions. The presence of CNT in the nanocomposite not only increases the efficient usage of incident photons, but also effectively separates charge carriers and facilitates the transfer of electrons and their use in nitrogen fixing to ammonia. The optimized nanocomposite (Bi<sub>2</sub>MoO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub>/CNT) had significantly high photocatalytic activity, exhibiting the highest production of H<sub>2</sub> and NH<sub>3</sub> relative to Bi<sub>2</sub>MoO<sub>6</sub> and g-C<sub>3</sub>N<sub>4</sub>. Finally, a logical charge transfer mechanism was proposed for H<sub>2</sub> evolution and NH<sub>3</sub> production.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"281 \",\"pages\":\"Article 113315\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824006275\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824006275","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

合理设计由太阳能材料半导体组成的光催化系统,将太阳能转化为优质化学品或可再生燃料,是实现可持续发展的一项极具吸引力的战略。本文利用 Bi2MoO6/g-C3N4/CNT 三元纳米复合太阳能材料,在水介质中利用模拟太阳光生产氢燃料。此外,上述纳米复合材料还显示出在水环境和氮气存在的环境条件下生产氨的能力。纳米复合材料中碳纳米管的存在不仅提高了入射光子的有效利用率,还有效地分离了电荷载体,促进了电子的转移并将其用于固氮制氨。优化后的纳米复合材料(Bi2MoO6/g-C3N4/CNT)具有极高的光催化活性,与 Bi2MoO6 和 g-C3N4 相比,H2 和 NH3 的产量最高。最后,提出了 H2 演化和 NH3 生成的逻辑电荷转移机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bi2MoO6/g-C3N4/CNT ternary nanocomposite solar energy material for boosting photocatalytic H2 evolution and N2 fixation to ammonia
The rational design of the photocatalytic system consisting of solar energy material semiconductors to convert solar energy into good chemicals or renewable fuels is an attractive strategy to achieve sustainable development. Here, hydrogen fuel is produced by using Bi2MoO6/g-C3N4/CNT ternary nanocomposite solar energy material in aqueous medium and using simulated sunlight. Also, the mentioned nanocomposite shows a promising ability to produce ammonia in the water environment and the presence of nitrogen gas under ambient conditions. The presence of CNT in the nanocomposite not only increases the efficient usage of incident photons, but also effectively separates charge carriers and facilitates the transfer of electrons and their use in nitrogen fixing to ammonia. The optimized nanocomposite (Bi2MoO6/g-C3N4/CNT) had significantly high photocatalytic activity, exhibiting the highest production of H2 and NH3 relative to Bi2MoO6 and g-C3N4. Finally, a logical charge transfer mechanism was proposed for H2 evolution and NH3 production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信