弱⁎紧凑凸集上等距映射和α-无穷映射半群的定点定理

IF 1.2 3区 数学 Q1 MATHEMATICS
Abhishek, S. Rajesh
{"title":"弱⁎紧凑凸集上等距映射和α-无穷映射半群的定点定理","authors":"Abhishek,&nbsp;S. Rajesh","doi":"10.1016/j.jmaa.2024.129053","DOIUrl":null,"url":null,"abstract":"<div><div>A.T.-M. Lau raised the question “Does a nonempty weak<sup>⁎</sup> compact convex subset <em>X</em> of a dual Banach space <span><math><mi>B</mi><msup><mrow></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> have the fixed point property for a left reversible semigroup of nonexpansive mappings whenever <em>X</em> has the weak<sup>⁎</sup> normal structure?” Fendler et al. proved that a dual Banach space <span><math><mi>B</mi><msup><mrow></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> has the weak<sup>⁎</sup> fixed point property for a left reversible semigroup of nonexpansive mappings in the presence of the asymptotic center property. In this paper, we prove that a left reversible semigroup of isometry mappings has a common fixed point in the Chebyshev center of <em>X</em> whenever <em>X</em> is a nonempty weak<sup>⁎</sup> compact convex subset of a dual Banach space <span><math><mi>B</mi><msup><mrow></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> and <span><math><mi>B</mi><msup><mrow></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> has the asymptotic center property. In 2010, A.T.-M. Lau et al. proved that a group <span><math><mi>G</mi></math></span> of isometric self-maps on a weak<sup>⁎</sup> compact convex subset <em>X</em> of a dual Banach space <span><math><mi>B</mi><msup><mrow></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> has a common fixed point in <em>X</em> whenever <em>X</em> has the weak<sup>⁎</sup> normal structure. In this paper, we prove that a group <span><math><mi>G</mi></math></span> of isometry mappings from <em>X</em> into itself has a common fixed point in the Chebyshev center of <em>X</em>. Moreover, we prove that if <em>X</em> is a nonempty weak<sup>⁎</sup> compact convex set having the weak<sup>⁎</sup> normal structure in a dual Banach space <span><math><mi>B</mi><msup><mrow></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> and <span><math><mi>J</mi></math></span> is the set of all surjective isometry mappings on <em>X</em> then <span><math><mi>J</mi></math></span> has a common fixed point in the Chebyshev center of <em>X</em>. In 2011, Aoyama and Kohsaka introduced the class of <em>α</em>-nonexpansive mappings in Banach spaces. In 2018, Amini et al. proved the weak fixed point property of an <em>α</em>-nonexpansive mapping in the presence of the normal structure. In this paper, we prove the weak<sup>⁎</sup> fixed point property of an <em>α</em>-nonexpansive mapping in the presence of the weak<sup>⁎</sup> normal structure. Further, we extend the fixed point result of Amini et al. for a commuting family of <em>α</em>-nonexpansive mappings.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 1","pages":"Article 129053"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed point theorems of semigroup of isometry mappings and α-nonexpansive mappings on weak⁎ compact convex sets\",\"authors\":\"Abhishek,&nbsp;S. Rajesh\",\"doi\":\"10.1016/j.jmaa.2024.129053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A.T.-M. Lau raised the question “Does a nonempty weak<sup>⁎</sup> compact convex subset <em>X</em> of a dual Banach space <span><math><mi>B</mi><msup><mrow></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> have the fixed point property for a left reversible semigroup of nonexpansive mappings whenever <em>X</em> has the weak<sup>⁎</sup> normal structure?” Fendler et al. proved that a dual Banach space <span><math><mi>B</mi><msup><mrow></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> has the weak<sup>⁎</sup> fixed point property for a left reversible semigroup of nonexpansive mappings in the presence of the asymptotic center property. In this paper, we prove that a left reversible semigroup of isometry mappings has a common fixed point in the Chebyshev center of <em>X</em> whenever <em>X</em> is a nonempty weak<sup>⁎</sup> compact convex subset of a dual Banach space <span><math><mi>B</mi><msup><mrow></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> and <span><math><mi>B</mi><msup><mrow></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> has the asymptotic center property. In 2010, A.T.-M. Lau et al. proved that a group <span><math><mi>G</mi></math></span> of isometric self-maps on a weak<sup>⁎</sup> compact convex subset <em>X</em> of a dual Banach space <span><math><mi>B</mi><msup><mrow></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> has a common fixed point in <em>X</em> whenever <em>X</em> has the weak<sup>⁎</sup> normal structure. In this paper, we prove that a group <span><math><mi>G</mi></math></span> of isometry mappings from <em>X</em> into itself has a common fixed point in the Chebyshev center of <em>X</em>. Moreover, we prove that if <em>X</em> is a nonempty weak<sup>⁎</sup> compact convex set having the weak<sup>⁎</sup> normal structure in a dual Banach space <span><math><mi>B</mi><msup><mrow></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> and <span><math><mi>J</mi></math></span> is the set of all surjective isometry mappings on <em>X</em> then <span><math><mi>J</mi></math></span> has a common fixed point in the Chebyshev center of <em>X</em>. In 2011, Aoyama and Kohsaka introduced the class of <em>α</em>-nonexpansive mappings in Banach spaces. In 2018, Amini et al. proved the weak fixed point property of an <em>α</em>-nonexpansive mapping in the presence of the normal structure. In this paper, we prove the weak<sup>⁎</sup> fixed point property of an <em>α</em>-nonexpansive mapping in the presence of the weak<sup>⁎</sup> normal structure. Further, we extend the fixed point result of Amini et al. for a commuting family of <em>α</em>-nonexpansive mappings.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"544 1\",\"pages\":\"Article 129053\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009752\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009752","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

A.T.-M.Lau 提出了这样一个问题:"当 X 具有弱⁎法向结构时,对偶巴纳赫空间 B⁎ 的非空弱⁎紧凑凸子集 X 是否具有非展开映射左可逆半群的定点性质?Fendler 等人证明,在存在渐近中心性质的情况下,对偶巴纳赫空间 B⁎对于非展开映射的左可逆半群具有弱⁎定点性质。本文证明,只要 X 是对偶巴纳赫空间 B⁎的非空弱⁎紧凑凸子集,且 B⁎具有渐近中心性质,则等效映射的左可逆半群在 X 的切比雪夫中心有一个公共定点。2010 年,A.T.-M. Lau et al.Lau 等人证明,只要 X 具有弱⁎法向结构,对偶 Banach 空间 B⁎的弱⁎紧凑凸子集 X 上的等距自映射群 G 在 X 中就有一个公共定点。在本文中,我们证明了从 X 进入自身的等距映射群 G 在 X 的切比雪夫中心有一个公共定点。此外,我们还证明,如果 X 是一个非空的弱⁎紧凑凸集,在对偶巴纳赫空间 B⁎中具有弱⁎法向结构,且 J 是 X 上所有投射等值映射的集合,那么 J 在 X 的切比雪夫中心有一个公共定点。 2011 年,Aoyama 和 Kohsaka 引入了巴纳赫空间中的α-无穷映射类。2018 年,Amini 等人证明了α-无穷映射在存在法结构时的弱定点性质。在本文中,我们证明了存在弱⁎法结构的α-无穷映射的弱⁎定点性质。此外,我们还将阿米尼等人的定点结果扩展到了α-无穷映射的换向族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed point theorems of semigroup of isometry mappings and α-nonexpansive mappings on weak⁎ compact convex sets
A.T.-M. Lau raised the question “Does a nonempty weak compact convex subset X of a dual Banach space B have the fixed point property for a left reversible semigroup of nonexpansive mappings whenever X has the weak normal structure?” Fendler et al. proved that a dual Banach space B has the weak fixed point property for a left reversible semigroup of nonexpansive mappings in the presence of the asymptotic center property. In this paper, we prove that a left reversible semigroup of isometry mappings has a common fixed point in the Chebyshev center of X whenever X is a nonempty weak compact convex subset of a dual Banach space B and B has the asymptotic center property. In 2010, A.T.-M. Lau et al. proved that a group G of isometric self-maps on a weak compact convex subset X of a dual Banach space B has a common fixed point in X whenever X has the weak normal structure. In this paper, we prove that a group G of isometry mappings from X into itself has a common fixed point in the Chebyshev center of X. Moreover, we prove that if X is a nonempty weak compact convex set having the weak normal structure in a dual Banach space B and J is the set of all surjective isometry mappings on X then J has a common fixed point in the Chebyshev center of X. In 2011, Aoyama and Kohsaka introduced the class of α-nonexpansive mappings in Banach spaces. In 2018, Amini et al. proved the weak fixed point property of an α-nonexpansive mapping in the presence of the normal structure. In this paper, we prove the weak fixed point property of an α-nonexpansive mapping in the presence of the weak normal structure. Further, we extend the fixed point result of Amini et al. for a commuting family of α-nonexpansive mappings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信