具有诺伊曼边界条件的多重散射问题的高频渐近展开

IF 1.2 3区 数学 Q1 MATHEMATICS
Yassine Boubendir , Fatih Ecevit
{"title":"具有诺伊曼边界条件的多重散射问题的高频渐近展开","authors":"Yassine Boubendir ,&nbsp;Fatih Ecevit","doi":"10.1016/j.jmaa.2024.129047","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the two-dimensional high-frequency plane wave scattering problem in the exterior of a finite collection of disjoint, compact, smooth (<span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>), strictly convex obstacles with Neumann boundary conditions. Using integral equation formulations, we determine the Hörmander classes and derive Melrose-Taylor type high-frequency asymptotic expansions of the total fields corresponding to multiple scattering iterations on the boundaries of the scattering obstacles. These asymptotic expansions are used to obtain sharp wavenumber dependent estimates on the derivatives of multiple scattering total fields. Numerical experiments supporting the validity of these expansions are presented.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 1","pages":"Article 129047"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-frequency asymptotic expansions for multiple scattering problems with Neumann boundary conditions\",\"authors\":\"Yassine Boubendir ,&nbsp;Fatih Ecevit\",\"doi\":\"10.1016/j.jmaa.2024.129047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the two-dimensional high-frequency plane wave scattering problem in the exterior of a finite collection of disjoint, compact, smooth (<span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>), strictly convex obstacles with Neumann boundary conditions. Using integral equation formulations, we determine the Hörmander classes and derive Melrose-Taylor type high-frequency asymptotic expansions of the total fields corresponding to multiple scattering iterations on the boundaries of the scattering obstacles. These asymptotic expansions are used to obtain sharp wavenumber dependent estimates on the derivatives of multiple scattering total fields. Numerical experiments supporting the validity of these expansions are presented.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"544 1\",\"pages\":\"Article 129047\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009697\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009697","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了二维高频平面波散射问题,该问题发生在具有诺伊曼边界条件的有限不相邻、紧凑、光滑 (C∞)、严格凸面障碍物集合的外部。利用积分方程公式,我们确定了霍曼德类,并推导出与散射障碍物边界上的多次散射迭代相对应的总场的梅尔罗斯-泰勒型高频渐近展开。利用这些渐近展开,可以获得与波数相关的多次散射总场导数的尖锐估计值。本文介绍了支持这些扩展有效性的数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-frequency asymptotic expansions for multiple scattering problems with Neumann boundary conditions
We consider the two-dimensional high-frequency plane wave scattering problem in the exterior of a finite collection of disjoint, compact, smooth (C), strictly convex obstacles with Neumann boundary conditions. Using integral equation formulations, we determine the Hörmander classes and derive Melrose-Taylor type high-frequency asymptotic expansions of the total fields corresponding to multiple scattering iterations on the boundaries of the scattering obstacles. These asymptotic expansions are used to obtain sharp wavenumber dependent estimates on the derivatives of multiple scattering total fields. Numerical experiments supporting the validity of these expansions are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信