{"title":"论某些周期微分方程解的行为","authors":"E. Ait Dads , B. Es-sebbar , L. Lhachimi","doi":"10.1016/j.jmaa.2024.129048","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the conditions that ensure the existence of unique periodic solutions for ordinary differential equations of the form <span><math><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mi>A</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>u</mi><mo>+</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, where both <span><math><mi>A</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> are <em>T</em>-periodic. Particular emphasis is placed on understanding the behavior of bounded solutions on <span><math><mi>R</mi></math></span>. Moreover, we examine cases where the equation's coefficients are nonnegative.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 1","pages":"Article 129048"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the behavior of solutions of some periodic differential equations\",\"authors\":\"E. Ait Dads , B. Es-sebbar , L. Lhachimi\",\"doi\":\"10.1016/j.jmaa.2024.129048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the conditions that ensure the existence of unique periodic solutions for ordinary differential equations of the form <span><math><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mi>A</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>u</mi><mo>+</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, where both <span><math><mi>A</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> are <em>T</em>-periodic. Particular emphasis is placed on understanding the behavior of bounded solutions on <span><math><mi>R</mi></math></span>. Moreover, we examine cases where the equation's coefficients are nonnegative.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"544 1\",\"pages\":\"Article 129048\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009703\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009703","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了确保形式为 u′=A(t)u+f(t) 的常微分方程存在唯一周期解的条件,其中 A(t) 和 f(t) 均为 T 周期。此外,我们还研究了方程系数为非负的情况。
On the behavior of solutions of some periodic differential equations
This paper investigates the conditions that ensure the existence of unique periodic solutions for ordinary differential equations of the form , where both and are T-periodic. Particular emphasis is placed on understanding the behavior of bounded solutions on . Moreover, we examine cases where the equation's coefficients are nonnegative.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.