David Alonso-Gutiérrez , Francisco Marín Sola , Javier Martín Goñi , Jesús Yepes Nicolás
{"title":"格伦鲍姆不等式的一般函数版本","authors":"David Alonso-Gutiérrez , Francisco Marín Sola , Javier Martín Goñi , Jesús Yepes Nicolás","doi":"10.1016/j.jmaa.2024.129065","DOIUrl":null,"url":null,"abstract":"<div><div>A classical inequality by Grünbaum provides a sharp lower bound for the ratio <span><math><mrow><mi>vol</mi></mrow><mo>(</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo><mo>/</mo><mrow><mi>vol</mi></mrow><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, where <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> denotes the intersection of a convex body with non-empty interior <span><math><mi>K</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with a halfspace bounded by a hyperplane <em>H</em> passing through the centroid <span><math><mi>g</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> of <em>K</em>.</div><div>In this paper we extend this result to the case in which the hyperplane <em>H</em> passes by any of the points lying in a whole uniparametric family of <em>r</em>-powered centroids associated to <em>K</em> (depending on a real parameter <span><math><mi>r</mi><mo>≥</mo><mn>0</mn></math></span>), by proving a more general functional result on concave functions.</div><div>The latter result further connects (and allows one to recover) various inequalities involving the centroid, such as a classical inequality (due to Minkowski and Radon) that relates the distance of <span><math><mi>g</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> to a supporting hyperplane of <em>K</em>, or a result for volume sections of convex bodies proven independently by Makai Jr. & Martini and Fradelizi.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 1","pages":"Article 129065"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general functional version of Grünbaum's inequality\",\"authors\":\"David Alonso-Gutiérrez , Francisco Marín Sola , Javier Martín Goñi , Jesús Yepes Nicolás\",\"doi\":\"10.1016/j.jmaa.2024.129065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A classical inequality by Grünbaum provides a sharp lower bound for the ratio <span><math><mrow><mi>vol</mi></mrow><mo>(</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo><mo>/</mo><mrow><mi>vol</mi></mrow><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, where <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> denotes the intersection of a convex body with non-empty interior <span><math><mi>K</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with a halfspace bounded by a hyperplane <em>H</em> passing through the centroid <span><math><mi>g</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> of <em>K</em>.</div><div>In this paper we extend this result to the case in which the hyperplane <em>H</em> passes by any of the points lying in a whole uniparametric family of <em>r</em>-powered centroids associated to <em>K</em> (depending on a real parameter <span><math><mi>r</mi><mo>≥</mo><mn>0</mn></math></span>), by proving a more general functional result on concave functions.</div><div>The latter result further connects (and allows one to recover) various inequalities involving the centroid, such as a classical inequality (due to Minkowski and Radon) that relates the distance of <span><math><mi>g</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> to a supporting hyperplane of <em>K</em>, or a result for volume sections of convex bodies proven independently by Makai Jr. & Martini and Fradelizi.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"544 1\",\"pages\":\"Article 129065\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009879\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009879","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
格伦鲍姆(Grünbaum)的一个经典不等式为 vol(K-)/vol(K) 之比提供了一个尖锐的下限,其中 K- 表示内部非空的凸体 K⊂Rn 与通过 K 的中心点 g(K) 的超平面 H 所限定的半空间的交集。在本文中,我们通过证明关于凹函数的更一般的函数结果,将这一结果扩展到超平面 H 经过与 K 相关联的 r-powered 中心点(取决于实参数 r≥0)的整个单参数族中的任意点的情况。后一结果进一步连接(并允许人们恢复)涉及中心点的各种不等式,例如将 g(K) 的距离与 K 的支撑超平面相关联的经典不等式(由闵科夫斯基和拉顿提出),或由小马凯 & 马蒂尼和弗拉德利齐独立证明的凸体体积截面结果。
A general functional version of Grünbaum's inequality
A classical inequality by Grünbaum provides a sharp lower bound for the ratio , where denotes the intersection of a convex body with non-empty interior with a halfspace bounded by a hyperplane H passing through the centroid of K.
In this paper we extend this result to the case in which the hyperplane H passes by any of the points lying in a whole uniparametric family of r-powered centroids associated to K (depending on a real parameter ), by proving a more general functional result on concave functions.
The latter result further connects (and allows one to recover) various inequalities involving the centroid, such as a classical inequality (due to Minkowski and Radon) that relates the distance of to a supporting hyperplane of K, or a result for volume sections of convex bodies proven independently by Makai Jr. & Martini and Fradelizi.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.