基于柔性碳布上掺银 MoO3 纳米棒的高能量密度超级电容器

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sarda Sharma , Sandeep Singh Chauhan , Karumbaiah N. Chappanda , Mohammad Rizwanur Rahman
{"title":"基于柔性碳布上掺银 MoO3 纳米棒的高能量密度超级电容器","authors":"Sarda Sharma ,&nbsp;Sandeep Singh Chauhan ,&nbsp;Karumbaiah N. Chappanda ,&nbsp;Mohammad Rizwanur Rahman","doi":"10.1016/j.matlet.2024.137728","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the plain MoO<sub>3</sub> and Ag-doped MoO<sub>3</sub> nanorods are anchored on a flexible fibrous carbon cloth using a hydrothermal method, and their performances are thoroughly evaluated by fabricating the supercapacitors using both types of nanorods. The doped substrate shows drastic enhancement in specific capacitance which is nearly four times greater than undoped MoO<sub>3</sub> nanorods at a current density of 0.5 mA/cm<sup>2</sup>. Additionally, the Ag doped MoO<sub>3</sub> shows an excellent energy density of 43 µWh/cm<sup>2</sup>. The superior performance of the doped nanorods is attributed to its pseudocapacitive behaviour, higher conductivity, and improved charge kinetics at the electrode–electrolyte interface, enabling a more efficient and potential supercapacitor-based energy storage system to drive future low power flexible and wearable electronic devices.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"380 ","pages":"Article 137728"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High energy density supercapacitor based on Ag doped MoO3 nanorods on a flexible carbon cloth\",\"authors\":\"Sarda Sharma ,&nbsp;Sandeep Singh Chauhan ,&nbsp;Karumbaiah N. Chappanda ,&nbsp;Mohammad Rizwanur Rahman\",\"doi\":\"10.1016/j.matlet.2024.137728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the plain MoO<sub>3</sub> and Ag-doped MoO<sub>3</sub> nanorods are anchored on a flexible fibrous carbon cloth using a hydrothermal method, and their performances are thoroughly evaluated by fabricating the supercapacitors using both types of nanorods. The doped substrate shows drastic enhancement in specific capacitance which is nearly four times greater than undoped MoO<sub>3</sub> nanorods at a current density of 0.5 mA/cm<sup>2</sup>. Additionally, the Ag doped MoO<sub>3</sub> shows an excellent energy density of 43 µWh/cm<sup>2</sup>. The superior performance of the doped nanorods is attributed to its pseudocapacitive behaviour, higher conductivity, and improved charge kinetics at the electrode–electrolyte interface, enabling a more efficient and potential supercapacitor-based energy storage system to drive future low power flexible and wearable electronic devices.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"380 \",\"pages\":\"Article 137728\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X24018688\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24018688","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用水热法在柔性纤维碳布上锚定了普通 MoO3 纳米棒和掺杂 Ag 的 MoO3 纳米棒,并通过使用这两种纳米棒制造超级电容器全面评估了它们的性能。在电流密度为 0.5 mA/cm2 时,掺杂基底的比电容比未掺杂的 MoO3 纳米棒高出近四倍。此外,掺银 MoO3 还显示出 43 µWh/cm2 的出色能量密度。掺杂纳米棒的卓越性能归功于它的伪电容行为、更高的电导率以及电极-电解质界面电荷动力学的改善,从而使基于超级电容器的储能系统更高效、更有潜力,以驱动未来的低功耗柔性可穿戴电子设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High energy density supercapacitor based on Ag doped MoO3 nanorods on a flexible carbon cloth
In this study, the plain MoO3 and Ag-doped MoO3 nanorods are anchored on a flexible fibrous carbon cloth using a hydrothermal method, and their performances are thoroughly evaluated by fabricating the supercapacitors using both types of nanorods. The doped substrate shows drastic enhancement in specific capacitance which is nearly four times greater than undoped MoO3 nanorods at a current density of 0.5 mA/cm2. Additionally, the Ag doped MoO3 shows an excellent energy density of 43 µWh/cm2. The superior performance of the doped nanorods is attributed to its pseudocapacitive behaviour, higher conductivity, and improved charge kinetics at the electrode–electrolyte interface, enabling a more efficient and potential supercapacitor-based energy storage system to drive future low power flexible and wearable electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信